Citations
The paper
- Marian Jureczko and
Diomidis Spinellis.
Using
object-oriented design metrics to predict software defects.
In Models and Methodology of System Dependability. Proceedings of
RELCOMEX 2010: Fifth International Conference on Dependability of Computer
Systems DepCoS, Monographs of System Dependability, pages 69–81,
Wrocław, Poland, 2010. Oficyna Wydawnicza Politechniki
Wrocławskiej.
has been cited by the following works.
- C. Isen, L. John, P.C.
Jung, and J.S. Hyo.
On the representativeness of embedded Java benchmarks.
In 2008 IEEE International Symposium on Workload Characterization,
IISWC'08, pages 153–162, 2008.
(doi:10.1109/IISWC.2008.4636100)
- M. Jureczko and
L. Madeyski.
Towards identifying software project clusters with regard to defect prediction.
In ACM International Conference Proceeding Series, 2010.
(doi:10.1145/1868328.1868342)
- A. Capiluppi,
P. Falcarin, and C. Boldyreff.
Code defactoring: Evaluating the effectiveness of Java obfuscations.
In Proceedings - Working Conference on Reverse Engineering, WCRE,
pages 71–80, 2012.
(doi:10.1109/WCRE.2012.17)
- Z. Liaghat, A.H. Rasekh,
and A.R. Tabebordbar.
Enhance software quality using data mining algorithms.
In 2012 Spring World Congress on Engineering and Technology, SCET 2012 -
Proceedings, 2012.
(doi:10.1109/SCET.2012.6342020)
- S.B. Lim and K. and Yoon.
Ubiquitous air quality monitoring system with service oriented architecture
middleware.
Journal of Convergence Information Technology, 7(6):193–201,
2012.
(doi:10.4156/jcit.vol7.issue6.24)
- M. Lumpe, R. Vasa,
T. Menzies, R. Rush, and B. Turhan.
Learning better inspection optimization policies.
International Journal of Software Engineering and Knowledge
Engineering, 22(5):621–644, 2012.
(doi:10.1142/S0218194012500179)
- R. Malhotra and
A. Jain.
Fault prediction using statistical and machine learning methods for improving
software quality.
Journal of Information Processing Systems, 8(2):241–262, 2012.
(doi:10.3745/JIPS.2012.8.2.241)
- F. Shu, Y. Yang, , and
Q. Wang.
An investigation on the feasibility of cross-project defect prediction.
Automated Software Engineering, 19(2):167–199, 2012.
(doi:10.1007/s10515-011-0090-3)
- S. Alhusain,
S. Coupland, R. John, and M. Kavanagh.
Design pattern recognition by using adaptive neuro fuzzy inference system.
In 25th IEEE International Conference on Tools with Artificial
Intelligence, ICTAI 2013, pages 581–587, 2013.
(doi:10.1109/ICTAI.2013.92)
- S. Alhusain,
S. Coupland, R. John, and M. Kavanagh.
Towards machine learning based design pattern recognition.
In 2013 13th UK Workshop on Computational Intelligence, UKCI 2013,
pages 244–251, 2013.
(doi:10.1109/UKCI.2013.6651312)
- I. Bluemke and
R. Roguski.
Metrics in assessing the quality and evolution of jEdit.
Lecture Notes in Electrical Engineering, 151 LNEE:717–727, 2013.
(doi:10.1007/978-1-4614-3558-7_61)
- O. Mizuno.
On effects of tokens in source code to accuracy of fault-prone module
prediction.
In 2013 17th International Computer Science and Engineering Conference,
ICSEC 2013, pages 103–108, 2013.
(doi:10.1109/ICSEC.2013.6694761)
- F. Peters, T. Menzies,
and A. Marcus.
Better cross company defect prediction.
In 10th International Working Conference on Mining Software Repositories,
MSR 2013, pages 409–418, 2013.
(doi:10.1109/MSR.2013.6624057)
- B. Turhan,
A. Tosun Misirli, and A. Bener.
Empirical evaluation of the effects of mixed project data on learning defect
predictors.
Information and Software Technology, 55(6):1101–1118, 2013.
- M. Alenezi and
K. Magel.
Empirical evaluation of a new coupling metric: Combining structural and
semantic coupling.
International Journal of Computers and Applications, 36(1):34–44,
2014.
(doi:10.2316/Journal.202.2014.1.202-3902)
- A. Kaur and K. Kaur.
Performance analysis of ensemble learning for predicting defects in open source
software.
In 3rd International Conference on Advances in Computing, Communications
and Informatics, ICACCI 2014, pages 219–225. Institute of Electrical
and Electronics Engineers Inc., 2014.
(doi:10.1109/ICACCI.2014.6968438)
- A. Kaur, K. Kaur, and
K. Pathak.
Software maintainability prediction by data mining of software code metrics.
In 2014 International Conference on Data Mining and Intelligent
Computing, ICDMIC 2014. Institute of Electrical and Electronics
Engineers Inc., 2014.
(doi:10.1109/ICDMIC.2014.6954262)
- R. Malhotra and
A.J. Bansal.
Cross project change prediction using open source projects.
In 3rd International Conference on Advances in Computing, Communications
and Informatics, ICACCI 2014, pages 201–207. Institute of Electrical
and Electronics Engineers Inc., 2014.
(doi:10.1109/ICACCI.2014.6968347)
- O. Mizuno and
Y. Hirata.
A cross-project evaluation of text-based fault-prone module prediction.
In 2014 6th International Workshop on Empirical Software Engineering in
Practice, IWESEP 2014, pages 43–48. Institute of Electrical and
Electronics Engineers Inc., 2014.
(doi:10.1109/IWESEP.2014.9)
- R. Shatnawi.
Empirical study of fault prediction for open-source systems using the chidamber
and kemerer metrics.
IET Software, 8(3):113–119, 2014.
(doi:10.1049/iet-sen.2013.0008)
- M. Alenezi and
M. Zarour.
Modularity measurement and evolution in object-oriented open-source projects.
In 2015 International Conference on Engineering and MIS, ICEMIS
2015, volume 24-26-September-2015. Association for Computing
Machinery, 2015.
(doi:10.1145/2832987.2833013)
- L. Amorim, E. Costa,
N. Antunes, B. Fonseca, and M. Ribeiro.
Experience report: Evaluating the effectiveness of decision trees for
detecting code smells.
In 26th IEEE International Symposium on Software Reliability Engineering,
ISSRE 2015, pages 261–269. Institute of Electrical and Electronics
Engineers Inc., 2015.
(doi:10.1109/ISSRE.2015.7381819)
- I. Bluemke
and A. StepieŃ.
Experiment on defect prediction.
10th International Conference on Dependability and Complex Systems,
DepCoS-RELCOMEX 2015, 365:25–34, 2015.
(doi:10.1007/978-3-319-19216-1_3)
- M. Ceccato,
A. Capiluppi, P. Falcarin, and C. Boldyreff.
A large study on the effect of code obfuscation on the quality of java code.
Empirical Software Engineering, 20(6):1486–1524, 2015.
(doi:10.1007/s10664-014-9321-0)
- L. Chen, B. Fang,
Z. Shang, and Y. Tang.
Negative samples reduction in cross-company software defects prediction.
Information and Software Technology, 62(1):67–77, 2015.
(doi:10.1016/j.infsof.2015.01.014)
- F. Felisberto,
R. Laza, F. Fdez-Riverola, and A. Pereira.
A distributed multiagent system architecture for body area networks applied to
healthcare monitoring.
BioMed Research International, 2015, 2015.
(doi:10.1155/2015/192454)
- M. Gharehyazie,
D. Posnett, B. Vasilescu, and V. Filkov.
Developer initiation and social interactions in OSS: A case study of the
Apache software foundation.
Empirical Software Engineering, 20(5):1318–1353, 2015.
(doi:10.1007/s10664-014-9332-x)
- N. Gupta, D. Singh,
and A. Sharma.
Identifying effective software metrics for categorical defect prediction using
structural equation modeling.
In 3rd International Symposium on Women in Computing and Informatics, WCI
2015, volume 10-13-August-2015, pages 59–65. Association for
Computing Machinery, 2015.
(doi:10.1145/2791405.2791484)
- V. Gupta, N. Ganeshan,
and T.K. Singhal.
Determining the root causes of various software bugs throughsoftware metrics.
In 2nd International Conference on Computing for Sustainable Global
Development, INDIACom 2015, pages 1211–1215. Institute of Electrical
and Electronics Engineers Inc., 2015.
- P. He, B. Li, X. Liu,
J. Chen, and Y. Ma.
An empirical study on software defect prediction with a simplified metric set.
Information and Software Technology, 59:170–190, 2015.
(doi:10.1016/j.infsof.2014.11.006)
- A. Hindle.
Green mining: a methodology of relating software change and configuration to
power consumption.
Empirical Software Engineering, 20(2):374–409, 2015.
(doi:10.1007/s10664-013-9276-6)
- M. Jureczko and
L. Madeyski.
Cross-project defect prediction with respect to code ownership model: An
empirical study.
E-Informatica Software Engineering Journal, 9(1):21–35, 2015.
(doi:10.5277/e-Inf150102)
- A. Kaur, K. Kaur, and
H. Kaur.
An investigation of the accuracy of code and process metrics for defect
prediction of mobile applications.
In 4th International Conference on Reliability, Infocom Technologies and
Optimization, ICRITO 2015. Institute of Electrical and Electronics
Engineers Inc., 2015.
(doi:10.1109/ICRITO.2015.7359220)
- A. Kaur, K. Kaur, and
K. Pathak.
A proposed new model for maintainability index of open source software.
In 2014 3rd International Conference on Reliability, Infocom Technologies
and Optimization, ICRITO 2014. Institute of Electrical and Electronics
Engineers Inc., 2015.
(doi:10.1109/ICRITO.2014.7014758)
- L. Madeyski and
M. Jureczko.
Which process metrics can significantly improve defect prediction models? an
empirical study.
Software Quality Journal, 23(3):393–422, 2015.
(doi:10.1007/s11219-014-9241-7)
- R. Malhotra and
A.J. Bansal.
Fault prediction considering threshold effects of object-oriented metrics.
Expert Systems, 32(2):203–219, 2015.
(doi:10.1111/exsy.12078)
- I. Polato,
D. Barbosa, A. Hindle, and F. Kon.
Hadoop branching: Architectural impacts on energy and performance.
In 6th International Green and Sustainable Computing Conference, IGSC
2015. Institute of Electrical and Electronics Engineers Inc., 2015.
(doi:10.1109/IGCC.2015.7393709)
- J. Ruohonen,
S. Hyrynsalmi, and V. Leppänen.
Exploring the stability of software with time-series cross-sectional data.
In 2nd International Workshop on Software Architecture and Metrics, SAM
2015, pages 41–47. Institute of Electrical and Electronics Engineers
Inc., 2015.
(doi:10.1109/SAM.2015.13)
- R. Shatnawi.
Deriving metrics thresholds using log transformation.
Journal of Software: Evolution and Process, 27(2):95–113, 2015.
(doi:10.1002/smr.1702)
- H. Uchimiya,
S. Ogata, and K. Kaijiri.
Method mining in experimental software engineering.
In 2014 2nd International Conference on Systems and Informatics, ICSAI
2014, pages 1012–1016. Institute of Electrical and Electronics
Engineers Inc., 2015.
(doi:10.1109/ICSAI.2014.7009433)
- Ö.F. Arar and
K. Ayan.
Deriving thresholds of software metrics to predict faults on open source
software: Replicated case studies.
Expert Systems with Applications, 61:106–121, 2016.
(doi:10.1016/j.eswa.2016.05.018)
- I. Bluemke
and A. Stepień.
Selection of metrics for the defect prediction.
11th International Conference on Dependability and Complex Systems,
DepCoS-RELCOMEX 2016, 470:39–50, 2016.
(doi:10.1007/978-3-319-39639-2_4)
- T. Choeikiwong and P. Vateekul.
Two stage model to detect and rank software defects on imbalanced and scarcity
data sets.
IAENG International Journal of Computer Science, 43(3):344–355,
2016.
- E. Erturk
and E. Akcapinar Sezer.
Iterative software fault prediction with a hybrid approach.
Applied Soft Computing Journal, 49:1020–1033, 2016.
(doi:10.1016/j.asoc.2016.08.025)
- A. Kaur, K. Kaur, and
H. Kaur.
Application of machine learning on process metrics for defect prediction in
mobile application.
3rd International Conference on Information Systems Design and
Intelligent Applications, INDIA 2016, 433:81–98, 2016.
(doi:10.1007/978-81-322-2755-7_10)
- M. Kessel and
C. Atkinson.
Ranking software components for reuse based on non-functional properties.
Information Systems Frontiers, 18(5):825–853, 2016.
(doi:10.1007/s10796-016-9685-3)
- G. Kour and P. Singh.
Using Lehman's laws to validate the software evolution of agile projects.
In 2016 International Conference on Computational Techniques in
Information and Communication Technologies, ICCTICT 2016, pages
90–96. Institute of Electrical and Electronics Engineers Inc., 2016.
(doi:10.1109/ICCTICT.2016.7514558)
- Y. Li, Z.-Q. Huang,
Y. Wang, and B.-W. Fang.
New approach of cross-project defect prediction based on multi-source data.
Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering
and Technology Edition), 46(6):2034–2041, 2016.
(doi:10.13229/j.cnki.jdxbgxb201606037)
- F. Zhang, A.E. Hassan,
S. McIntosh, and Y. Zou.
The use of summation to aggregate software metrics hinders the performance of
defect prediction models.
IEEE Transactions on Software Engineering, PP(99), 2016.
(doi:10.1109/TSE.2016.2599161)
Home
Unless otherwise expressly stated, all original material on this page created by Diomidis Spinellis is licensed under a Creative Commons Attribution-Share Alike 3.0 Greece License.