Name :
School

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

Abst ract

Afile handling system which allows the wuser to
define a database according to his own needs is
descri bed. The operations on the database include the
ability to append new entries, nodify themas well as
del ete unwanted ones and list the entries in a sorted
order. In order to neet this end the binary tree file
structure was used and appropriate algorithns were

desi gned and i npl enent ed. Included is a ful
description of the data structures and algorithns
used. The whol e proj ect was tested and its

per formance eval uated.

Diomdis D. Spinellis
or College : Athens Coll ege (GCE School)

Centre Number : 92060
Candi dat e Nunber
Title of Project : Database Managenent System

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

1 Summary of purpose and scope of the project

1.1 Need

In a society where people are living in organised
communities one is often overwhelned by the mass of data one
encounters when one deals with various aspects of our lives. The

human nmenory which was once a reliable way to organise any
activity is incapable to deal with nost data connected situations
in our nodern world.

Various filing systens have been wused over the years to
deal with this problem Mst of themrelied on the printed word
and the ability to store many pages in a small space. Typica
exanpl es are t he t el ephone directories and the Ilibrary
catal ogues. These filing systens have wusually arranged their
entries in sone predefined order (usually al phabetic) and so, one
can easily locate the entry one is |looking for. Sone of them
like a book index or a |Ilibrary catal ogue, are usually just |ook
up tables for |arger databases.

These systens have various inefficiencies. Nanely they
consune much space, are difficult to use and many of themare
difficult to update (Encycl opedi as and tel ephone directories are
reprinted at periodic intervals).

Wth the advent of the m croconputer and the availability
of cheap mass storage nedia the conputerising of these databases
has becone feasi bl e.

1.2 Purpose
The purpose of this project is to denonstrate this

capability by designing a system that would allow the user to
define and use a database. The follow ng features seem to be

useful : Field namng, record indexing, insertion, deletion,
display and editing of entries as well as a sorted listing of
t hem

Furthernore this project should denonstrate the use of the
binary tree file indexing nethod which should provide speed and
efficiency.

2 First sone terns ..

It would seem appropriate at this point to discuss sone
terms that will w dely be used during the next pages.

File : is a set of structured data and in this text it wll
al ways be associated with its presence in the backing store
(di sk).

Record : will be used to identify one entry in the file.

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

Field : each record is subdivided in fields. Each field
whi ch consists of one or nore bytes contains different types of
i nformati on.

Tree : is a way to structure data. Every data item contains
pointers to other data itens and here each data item has only one
poi nter associated wth it. Thus the whole structure resenbles
the formof a tree.

Binary tree : binary trees are a special kind of trees. On
them each item points to zero one or two other itens.
Node or leaf or branch : is the nane that is given in this

project to the pointer which points to the next itenms in the
tree.

Root : every itemin the tree with the exception of the
first one is pointed by another item.

3 Di scussion on the specifications

The specifications seemreasonabl e and of the kind that can
be i npl enent ed with the existing software, hardware and
expertise. It seens that an analysis of the goals, and nore
i nportant, the shortcom ngs of the system is sonmething that wl|
be needed because of the conplexity of the task. A project of

this size when made to fit around the 600 Iline guide will nost
probably have many shortcom ngs.

However | believe that it will be useful on its own account
as a pilot project for a conplete database design. As for the
aspect of reliability I can only quote one of Glb's I|aws
of reliability "Investnment in reliability will increase until it
exceeds the probable cost of errors or until soneone insists on

getting sone useful work done."

4 Avai | abl e hardware tool s

4.1 CPU

The CPU to be used (Apple Ile 6502 based) is a typical von
Newmann machi ne based on a mcroprocessor. It has the capability
to work on 8 bit quantities (bytes) on various nmanners. It is

connected to a nodifiable random access nenory and to a random
access read only nenory. Only one user can use the nmachine at a
time so no provisions nust be taken in order to inplenent
resource sharing such as record | ocking, semaphoring and other
mul ti-user or multi-tasking procedures. Alnost inherent on the
design of the machine and mainly based on the input/output
devices is the collating sequence of the <character set. The
character set used is the ASCII character set and its order is
used as a collating sequence. This sequence is used in order to
conpare to strings of bytes.

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

4.2 Main storage

The main storage is conposed of 128k of random access
nodi fiable nmenory. The access time for this nenory is of the
order of hundreds of nanoseconds. This storage will be wused to
hol d the operating system the programas well as the structure
of the data-file and other variables. Two buffers are also
allocated by the program. These buffers are used as a tenporary
storage for the index file contents during their manipul ation. As
the operating systemprovides the file buffering the area of the
main menory which is used for file buffering is allocated by the
operating system

4.3 Backing storage

Two backi ng storage devices are available : A non renovabl e
W nchester disk drive and one 5 1/4 floppy disk drive. The hard
di sk drive has a capacity of 20M bytes and the floppy disk drive
a capacity of 200K bytes .On both of themdata is allocated in
the formof clusters which are fornmed by the division of themin
tracks, sectors and in the case of the hard disk drive in
cyl i nders.

The sl owest operations on this type of nedia are the head
nmovenent which results fromthe stepping fromone track to the
next and the notor startup tine (only for the floppy disk drive).
Soit wll be of great advantage to the programa) if datais
allocated in clusters on the same track and b) if the operating
system buffers the read operation and stores e.g. one whole track
after every read.

4.4 | nput

The main input device for this mcroconputer is the
keyboard. It seens appropriate for this kind of project. The
keyboard is directly connected to an |/0O port of the CPU Al
functions required to scan the keyboard matrix and translate the
result to an ASCI| code are handled by the built in ROMroutines.

A serial port is also available. Wt hout progranme
nodi fication it could be used to connect a bar code reader.
Usually these devices come wth software and/or hardware which
"traps" the requests for a character read and supply their own
out put when needed. Thus no provisions are made for this kind of
i nput device, although it can be very effectively used in various
dat abase usage environnents, such as |libraries, stores etc..

4.5 Qutput
The output devices are a Video Display Unit and a dot

matri x inmpact printer .Both of them can display the full ASCI
character set. The VDU supports advanced functions |like direct

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

cursor addressing and screen clearing. Although the printer
supports dot addressable graphics, they will not be used.

5 Avail abl e software tools
5.1 [Input Qutput system

The /O systemis located in ROM It handles all requests
for the /O devices including the printer Centronics protocol,
the screen dual port nmenory access arbitration and the backing
storage control in a primtive way. Functions Ilike get a
character or put a character or read/wite a sector are
avai |l abl e.

5.2 Qperating system

The operating systemis able to handle nore conpl ex tasks.
The operating systemis the UCSD P-systemoriginally devel oped at
the University of California San Diego and now distributed by
Sof Tech M crosystens. It is conposed by a kernel witten in
native code and a set of wutilities and nore advance functions
witten in a high | evel |anguage, nanely Pascal .

A main advantage of this operating system is the
portability it guarantees for all products that convey its
standard because the |anguage conpilers it provides are not
producing native code but an internediate pseudo code called
P-code. The P-code is inplemented as an interpreted code in al
machi nes and thus for the operating systemto becone avail able on
a specific machine only a new P-code interpreter 1is needed. A
di sadvantage of the system is its slowness because of the
interpreted code. Conpared to other operating systenms |ike UN X
M5-DOS or WMS it is rather primtive.

Nevertheless it is able to handle [/Oredirection and
random access files which are used in this project. Al I/0
requests are transferred to the operating systemvia the Pascal
conpi l er calls.

5.3 Language

The | anguage used is the UCSD Pascal . UCSD Pascal is the
Pascal variant used in the UCSD P-system Pascal is suitable for
this project because it supports data structuring and strong type
checking. Strong type checking was especially useful in the early
stages of the devel opnent where nuch of the checking for program
consi stency was done by the conpiler. Pascal has rightly been
described as a wilfully worn straightjacket. | believe that with
the structured progranm ng habits it inposes on the progranmer
sel f-docunenting, clear, easy to understand and mai ntain prograns
are created.

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

Two of the procedures used are recursive and because Pascal
supports recursive procedure calling their logic is easily
under st andabl e. Records are used extensively and this makes the
rel ati onship between various data itens nore clear and easy to
understand. Local variables elimnate the danger of a subroutine
to inadvertently change a global variable and passi ng by
reference allows subroutines t he change the contents of
variables. Sets have been used to a lesser extent mainly for
i nput validation. While developing this project | thought of
using variant records as a way to represent the varying users
needs. However because variant records do not allow sonmeone to
define e.g. an array whose length would be known during the
runtime, this idea was abandoned.

All the structuring constructs were wused i.e. |IF THEN, IF
THEN ELSE, WH LE DO, FOR DO REPEAT UNTIL, CASE etc.. Each one of
them proved its usefulness in many situations. The GOTO st at enent
was not used at all. A small inconvenience was created by the
absence of a statement like the return() statenent in the C
programm ng | anguage which allows the programe flow to exit from
any point of a function. Thus many functions are nested in IF
THEN ELSE bl ocks only because an error was found at the begi nning
of the function.

6 Data structures enpl oyed
6.1 Menory

The followi ng structure types are used :

The index file as well as the nmenory buffers are conposed of
| ndexFil eRex. It should be noted that all pointers that point to

not hi ng have the reserved value of 0. This is conposed as follows

| ndexFi | eRec=Record

LeftBranch : Integer; Pointer to the |left node.

Ri ght Branch : Integer; Pointer to the rigth node.

Key . KeyType; Key on which the file is indexed.

Dat aPoi nt . Integer; Pointer to the database file.
End;

The information of each field is stored in a record which
contains the name of the field, its length and the validation
type. The validation type can be any of the follow ng :

A ["A..PZ,0a . .7z2’] Al pha.

N [0 9 - #))] Numerioc.

'D [0 ..79] it.

Y ['Y, N,y ,')n,’T,’t’,”F, f’] Yes or No True or
fal se.

"E ['.."~"] Everything. All the ASCII| set.

The record naned Fieldlinfo is defined as foll ows :
Fi el dl nfoType = Record
Name c string[];

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

Lengt h . I nteger;
Val i dat e : Char;
end;

The information about the whole file structure is stored in
a record of FileStrucType which holds the nunber of fields, the
record length and the field on which the database is indexed.
Moreover it holds an array of |length as the maxi num nunber of
fields of field specific information as descri bed above.

FileStrucType = Record

Fi el dNum | ndexFi el d, RecordLength : I nteger;

Fieldlinfo : array[l..MaxFi el dNunber] of Fi el dlnfoType;
end;

6.2 Disk
6.2.1 Structure file

The structure file is a text file. Because of this it can
easily be displayed and altered, sonething which can be an aid
during the programe debuging. The file contains the foll ow ng
data :

No of fields (integer)
Field 1 Name (String)

Field 1 Iength (Integer)

Field 1 type (Character) (Validation type as explained in ValidRead)
Field 2 Nane

Field 2 le.

Field n type
Field on which the Database is indexed (integer)

6.2.2 Index file

The index file is a randomaccess file which consists of
entries of type IndexFil eRecType. These are stored one after the
ot her. The first two records are not hol ding any user
information. They are nore fully described in the initialization
secti on.

6.2.3 Data file

The data file consists of <characters in order to save
space. The record length is variable and so a special procedure
reads all fields in a procrustean manner i.e. chopping the |ong
ones and padding the short ones before they are witten to the
data file. This results in huge space savings as one can easily

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

i magi ne when one thinks of a telephone directory with a record
| ength of 200 characters.

7 Description of the algorithm
7.1 Search

In order to locate an entry in the index file the follow ng
al gorithm was used :
While there are other entries and the entry is not found
Read an entry
Conpare the two keys
greater : new position is right pointer
less : new position is left pointer
equal : entry found
| f the new position is O there are no other entries
end
If the new position is O then
the entry was not found
el se
the entry was found.

During the whol e search a gl obal vari able named root points
to the previous file position. This serves two purposes : a) If
the entry is found the root position is known and can be used by
a procedure, such as delete, to elimnate the data |links, and b)
If the entry is not found, the root obviously reflects the
nearest point where the key should be and can thus be used by
procedures such as the insert procedure.

7.2 Insert

The insert procedure is relatively sinple because it uses
much information of the search procedure. First of all | check
and verify that the entry is not already present. After that |
all ocate space on the file for the new entry. The space can be
allocated fromtwo sources. Either froman already deleted entry
that is unlinked from the deleted entries linked list - or if
such an entry does not exist - the newentry is directly appended
to the end of the file. After that, and based on the gl obal
variable Root which after the search call indicates the entry
where the new entry should be hanged the only thing needed is to
find out which of the two nodes of the Root entry nust point to
the new entry. This is easily found by conparing the tw keys.
Subsequently the Root entry is nodified to point to the new
entry.

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

7.3 Delete
7.3.1 General

The delete procedure was the one that | found the nost
difficult inthis project. Two were the main difficulties that |
encountered. First of all the problemof renoving an entry from
the binary tree wwthout ruining the tree structure and secondly
the problemof re-usage of the space. The first problem was
divided in three different situations which | wll shortly
explain. The second problemwas solved with the use of a |inked
l[ist. Wen an entry has been deleted the pointers have no nore
use. So | started Alinked list wusing as pointers the left
pointers of all deleted entries starting wwth the |left pointer of
the dumy record #0. This linked |ist is updated for the sake of

sinplicity from its start i.e. from the entry #0 both for
insertion and for deletion. This is not the nost el egant sol ution
because now the linked Ilist works as a LIFO storage (Last in

first out). This nmeans that the last entry deleted wll be the
first entry to be reused and this makes it inpossible to add an
undel ete feature to the programe.

In order to add an itemto the linked list entry #0 is
sinply made to point to this item and the left pointer of this
itemholds the old contents of the left pointer of entry #0. As
usual the reserved value of O neans that this is the |ast entry.

7.3.2 No nodes

Now | will consider the different aspects of the delete
operation. One entry can have by definition zero, one or two
nodes. The easiest case is that where an entry has zero nodes.
In that case in order to renove the entry fromthe tree structure
the pointer of its root which points to it is sinply assigned the
val ue of O.

7.3.3 One node

A nore difficult problemoccurs when the entry point to one
and only one entry. As one can easily understand this segnent of
the tree resenbles alinked list sothe only way to renpve an
entry from its mddle is to make its predecessor point to its
successor. This is what the delete procedure does 1in this case.
In order to mnimse the decision nmaking paths one small trick is
used : The successor pointer is found by adding the left and the
right pointers of the entry as one of themis guaranteed to be
zero.

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

7.3.4 Two nodes

The nost difficult situation occurs when an entry is
surrounded by others i.e. it has two successors. Cbviously the
linked list algorithmcan not be applied here. |Instead another
method is applied. For the sake of sinplicity this nethod is
conposed as a hybrid between the deletion of one node and the
insertion of another. The routine works as follows : | assune
that this entry has only on successor. For that purpose | save
t he ot her successor pointer in a local variable and then |I zero
the pointer. | may now call the delete procedure recursively
which will apply the one-node strategy and thus return to this
point after having renoved the entry from the tree. Wat now
remains is one successor which is conpletely out of the tree
structure. | now proceed to insert this successor into the tree
structure in the normal manner. Now the tree structure is left
i ntact.

7.4 List

The list procedure was inplenented because of its nature in
a totaly recursive way. Assune that eone wants to list a specific
entry. If the left node of the entry is non zero one wll have to
list that entry first. After that the current entry nust be
di spl ayed and then the right node entry nust be |listed (if it

exists). So | am nowready to discuss the elenents of this
recursive strategy approach
a) Reduction : The problemlist(entry) is reduced to the

problem list(entry left node), display entry, list(entry right
node) .

b) Termnation : The recursive process term nates when one
of the nodes is zero sonething which is true for the whole tree
frontier.

A nmore formal proof of this procedure is beyond the scope
of this project.

7.5 Edit

In order to mnimse the code conplexity the editing is
conposed of a deletion of the entry to be edited and after that a
new i nsertion. Because of the way the deleted space is used no
space waste is done. This nethod has two di sadvantages : a) the
order of the tree is disturbed and a series of edit operations
may yield to an unbal anced tree b) It is tinme consum ng.

However this nethod has a serious advantage over any other
method. It allows the user to alter the key nane if he so w shes.

Before the insert procedure is called the global variable
Edit is set to the value True and the old contents of the entry
are read into the global variable d dDataPack . The read data
procedure behaves in a different way wunder these circunstances.
Nanmely before each entry it asks the user if he wshes to change

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

it or not. Only in the case the user wshes to nodify the
contents the routine asks him to re-enter them This saves sone
anount of repetitive typing.

7.6 Initialize
7.6.1 General

Wen a newfile is created the three data files nust be
initialized. This is perfornmed inmmediately after the creation in
order to avoid unnecessary program conplexity during al
operations. The data structures in the files are designed in such
a way so that after initialization the file wll always appear
the same to all procedures. Having to take into account during
the search or the delete procedure whether the file 1is enpty or
not woul d doubl e the procedures conplexity.

7.6.2 Structure file

The structure file is filled with validated entries which
show the nunber of fields per record and the nane, |ength and
type of each field. It is nmade sure that the total |ength of al
fields does not exceed 200 characters and that no type that does
not exist is entered. The field onto which the whole data file is
i ndexed is al so recorded.

7.6.3 Index file

The index file is initialized by being filled wth two
dumy records. Dummy record #0 1is a place holder which ensures
that no pointer will ever take the reserved value of 0. This
val ue has the special neaning that there exists no other entry
for the specific chain. One other use of the record #0 is to mark
the beginning of the deleted itens linked list. As the file is
enpty and no deleted itens exist it takes the value of zero. Thus
when a deleted itemis added to the chain it wll take the value
of zero and thus mark the end of the linked list. In this way the
linked |ist add renove algorithmis sinplified.

The second record that is initialized is record #1. This
record is made to contain a blank entry which can not be entered
by the user. Both nodes are nade to point to zero. This second
record exists so that I wll always know the beginning (root) of
the tree. If that was to be a user entered record I would have to
provide a way to distinguish between an enpty file and a non
enpty file during insert and | would have to hold the start of
the tree in a separate variable because this entry could also be
deleted. It is obvious that programme conplexity is mnimsed by
the use of this strategy. The greater search tinme is independent
of the search length and we can thus ignore it.

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

7.6.4 Database file

is just pointed by the index record and
lization other than the ReWite procedure
contents (if any).

it needs no other init

The dat abase filg
i
that will renmove its ol

a
d
7.7 Anal ogi es between al gorithm and human behavi our

After having described all the algorithnms used in this
project it would be interesting to observe if any analogies
between this system and ot her non-machi ne assi sted systens exist.
One system that suits our purpose is that of the library
cat al ogue. When one wants to find an entry in a card based system
one opens the card drawer and looks at the front card. Most
probably the book one is searching for is not there. After that
one may take two actions. Either he wll guess the cards
approxi mate position by taking into account the |letter on which
the card index started and the letter he is searching for (which
is an approximation to the hashing algorithm- not inplenented in
this project) or, nost likely,he will |look at the <card in the
m ddl e of the drawer. He will then proceed either to the cards in
front of the mddle or those on the back of the mddle each tine
hal ving his distance fromthe entry he is searching for.

This is an approximation to the binary tree searching
algorithmthat | have inplenented in the project. Having found
the entry he is searching one will now | ook at the nunber of the
shel f where the book can be found. The analogy with | ooking at
the index to the database file fromthe indexfile is too obvious!

8 Data validation and error anal ysis
8.1 Input validation

During all user entries the programme validates the entry
so that it is of a |legal value. This is done by calling a speci al
procedure which only allows validated entry. Furthernore the
nunmerical entries are checked to be within specific bounds.

8.2 Internal validation

The progranmme is not designed in a vary robust way towards
internal errors. For exanple a node that would point to its self
woul d make the programme crash. For this reason this progranme is
not recommended for heavy or critical use. Mreover the progranme
| acks the ability to correct errors in the structure of the file.

The only neasure that has been taken to avoid such errors
is the stringent testing of the programme and the validation of
t he user inputs.

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

8.3 User validation

The ultinmate user of this progranme will be sonmeone who has
little or no experience wth automatic data processing (e.g. a
librarian). For this reason the programme enabl es the person who
designs the database to specify the kind of fields he w shes to
use and nore inportant their type.

In this way the ultimate user of the programme will not be
allowed to enter letters in a nuneric field or a nunber in a
Yes/ No field.

8.4 Programme limts

In order to cope with the need to declare the array length
before the conpilation certain limts had to be inposed. The use
of pointers and dynamc nenory allocation would nmake the whole
programme too conplex without making it nuch better. (It would
only marginally effect its capabilities). The following limts
were decided. As all the limts are coded as constants into the
programme it wll be relatively easy to change themif one so
W shes.

Maxi mum nunber of fields : 20 fields

Maxi mum field name length : 30 characters

Maxi mum record | ength : 200 bytes

Maxi mum Key | ength : 30 characters

9 Pr ogr amre
9.1 Procedures and functions

function ValidRead(ValidType : Char ; StringLength : Integer) : MaxString ;
Read a string with input length and type validation

procedure Pronpt(Nanme : MaxString);
WIll initialize the screen for the operation naned in nane i.e. Cear the
screen and wite the nanme on the top.

functi on Upper(C : Char) :;
Make C uppercase if required

functi on Conpare(A B : KeyType) : ConpareResult;
Conpare to entries of the index file according to ASCI| collating sequence and
return Geater Less or Equal

procedure | ndexRead(Were : Integer ; var \Wat : |ndexFileRec);
Read an entry from position Wiere in the index file into Wat

procedure I ndexWite(Were : Integer ; Wat : IndexFil eRec);
Wite an entry to position Wiere in the index file from Wat

procedure | nitVars;

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

Initialize gl obal variables

procedure OpenFil es;
Open al | database files

Procedure C oseFil es;
Cl ose all Database files

Procedure PrepareNewFi | e;
Initializes all Database files by creating new ones. The user
specifies their characteristics.

Procedure UseFil e;
Prepares the programto use an old data file by reading the
structure file contents

procedure DataRead(ltemNum : Integer ; var DataPack : RecordString);
Read data from position ItemNumin the database file into DataPack

Procedure Displaylten(ltemNum : |nteger);
Di splay the contents of the itemlocated in position ItemNumin DBF file

Functi on KeyNane : KeyType;
Returns the nane of the field onto which the database is i ndexed

Procedur e Not FoundError(Nanme : KeyType);
Reports an error if entry with key name Nane was no found

functi on ReadKeyNane : KeyType ;
Returns the nanme of the record the user wants to act upon

Procedure Readltenm(ltemNum : Integer ; Key : KeyType);
Reads all the contents of a record. If Edit is true allows default responses
according to the variable O dDat aPack. ItenNum points to the database file

Procedure List(Node:integer);
Goes through the tree structure in the collating sequence manner

Function Search(Key: KeyType) : i nt eger;

Return the Position of Key in file, O If not existing.

Al so set the global Variable Root to the Root of the record or where the
nonexi sting record shoul d be hanged.

Function I nsert: Bool ean;
Inserts a record into the file structure. Return False if it exists.

Functi on Del et e(Key: KeyType) : Bool ean;
Renoves the record Key fromthe tree structure and returns True if it exists.
The record is al so appended to the deleted records |inked |ist.

procedure OptionsScreen,;
Pronpt the user the avail able options he can perform

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

9.2 Programme body

The programme body is a big repeat-until |oop. The options
available to the user are displayed and the wuser presses the
first letter of the option he wishes to use. Wen no file has
been selected only three options are available. The user my
either create a new file or use an existing file or quit to the
system After an existing file has been chosen the user may
specify all other options such as add a newentry or view all
entries.

10 A sanpl e session
10.1 Sone technical information

In the follow ng pages a sanple session is displayed. The
screens that are printed are real screens from the programe.
They were generated in the follow ng manner: The progranme was
conpiled on an IBMPC wth a Turbo-Pascal conpiler. After that
the programme Si deki ck was | oaded as a nenory resident programme.
This programme offers the capabilities of a Not e- Pad, a
Cal cul ator, a Calendar and an ASCI| table at any instant of the
conputers operation. Wen the database programme started running
and the first screen appeared | entered Sidekicks Note-Pad
feature. This Note-Pad is |like a word processor that opens a
w ndow on the screen one is operating. It has the capability to
i mport things fromthe background screen (which was the database
system screen). So | inported the screen and saved it on the
disk. In this way 15 screens were created. The interesting thing
was that a look at the directory of the disk showed ne that not
only had | captured sanples of the nost inportant screens of the
programme but furthernmore | had a specific tinmetable of the whole
operation as the M5-DOS marks the dates and tines of all files.
In the follow ng screens | have inserted some conments. These are
witten in bold characters. No other editing was perforned.

10.2 Thirty mnutes with the progranme

Directory of files produced

Nane
START
CREATE
USE
SCREEN2
ADD1
ADD2
ADD3
LI ST
D SP1
Dl SP2
REMOVE

Si ze Ti me Comrent s
375 9: 30a ;Starting screen
1215 9: 39a ;Create a new file screen
105 9: 40a ; Use an existing file screen
494 9: 42a ;Starting screen with file in use
251 9:43a ; Add new entry screen
113 9: 46a ; Add new entry screen
247 9:49a ; Add new entry screen
750 9:51a ; Al phabetical listing
231 9:52a ;Display existing entry screen (wth error)
268 9:53a ;D splay existing entry screen (no error)
118 9: 54a ; Renmove entry screen

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

LI ST2 574 9:57a ; Al phabetical listing screen
EDI T1 331 9:59a ; Edi ting screen

EDI T2 371 10: 00a ; Editing screen

QUT 106 10: 00a ; Quit screen

Starting screen
GCE A Level Conputer Science Project (C 1985,86 Diomdis D. Spinellis

Dat a Base Managenent System

Avai | abl e Options

C(reate a new file
U(se an existing data file
Quit fromthe programe

Sel ect operation by typing the options first letter
The starting screen (Only three options are avail abl e)

Create a new fil e screen

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

The create a new file screen. Sonme erroneous entries were nmade to

denonstrate the input validation. It should be noted that sone
errors could not be nmade to appear on the screen as the programe
woul d just refuse to accept illegitimte characters.

Create a New File

Fil e name : prograns

Nunber of fields (1-20) :0 <-Error in entry (too snmall)
Nunmber of fields (1-20) :30 <-Error in entry (too |arge)
Nunber of fields (1-20) :7

Enter field 1 nanme : Conpany

Enter field length (up to 200) :25

Field type : A(l phabetic N(unmeric D(igit Y(es/No E(verything : E

Enter field 2 nane :Title

Enter field length (up to 175) :176

Enter field length (up to 175) :20

Field type : A(l phabetic N(unmeric D(igit Y(es/No E(verything : E
Enter field 3 nanme : Usage

Enter field length (up to 155) :30

Field type : A(l phabetic N(unmeric D(igit Y(es/No E(verything : E
Enter field 4 nanme : Nunber of disks

Enter field length (up to 125) :3

Field type : A(l phabetic N(uneric D(igit Y(es/No E(verything :D
Enter field 5 nanme : Rating

Enter field length (up to 122) :4

Field type : A(l phabetic N(unmeric D(igit Y(es/No E(verything : N
Enter field 6 name : Backup

Enter field length (up to 118) :1

Field type : A(l phabetic N(unmeric D(igit Y(es/No E(verything :Y
Enter field 7 nanme : Conments

Enter field length (up to 117) :45

Field type : A(l phabetic N(unmeric D(igit Y(es/No E(verything : E
| ndex on which field (1-7) :8 <-Error (non-existing field)
| ndex on which field (1-7) :0 <-Error (too small)

| ndex on which field (1-7) :2

Press any key to continue

Use an existing file screen

No checking is done for the existence of the file in order to nmake
t he programme nore portable.

Use an Existing Data File

Fil e name : prograns

Press any key to continue

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

Starting screen with file in use

Now new options have been mnade available. Note that other keys
than those with which an option starts are ignored.

GCE A Level Conputer Science Project (C 1985,86 Diomdis D. Spinellis

Dat a Base Managenent System

Avai | abl e Options

C(reate a new file

U(se an existing data file
A(dd a new entry

D(isplay an existing entry
L(ist Al phabeticaly
R(enove an existing entry
E(dit an existing entry
Quit fromthe programe

Sel ect operation by typing the options first letter

Add new entry screen

A newentry is added. A check is nade that the entry does not
al ready exi st.

Add a New Entry

Enter Title: Franework |1

Conpany: Asht on Tate

Usage: I ntegrated Software

Nunmber of disks:7

Rating:9.6

Backup:Y

Comrent s: An easy to use, powerfull integrated package
Record Inserted

Press any key to continue

Add new entry screen (with error)

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

Here the entry already existed.

Add a New Entry

Enter Title: Franework |1
Record al ready exists

Press any key to continue

Add new entry screen

Add a New Entry

Enter Title: Sidekick

Conpany: Borl and | nternati onal

Usage: Menory resident add on

Nunmber of disks:1

Rating: 9.2

Backup:Y

Comrent s: Very usefull, a real tinme saver
Record Inserted

Press any key to continue

Al phabetical |isting
A sorted listing of the file.

Li st Al phabeticaly

Conpany : WMarketed by | BM

Title : Easy Witer

Usage : Word processing

Nunber of disks : 2

Rating : 6

Backup : N

Comments : A primtive word processor

Conpany : Ashton Tate

Title : Franmework |1

Usage : Integrated Software

Nunmber of disks : 7

Rating : 9.6

Backup : Y

Comrents : An easy to use, powerfull integrated package

Conpany : Lotus research
Title : Lotus 123 Rel ease 2

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

Usage : Spreadsheet
Number of disks : 5

Rating : 9.3
Backup : Y
Comments : Powerfull, fast but conpl ex

Conpany : Borl and I nternational
Title : Sidekick

Usage : Menory resident add on
Nunmber of disks : 1

Rating : 9.2
Backup : Y
Comments : Very usefull, a real tinme saver

Press any key to continue

D splay existing entry screen (wWwth error)

Here | request to see an entry of a programe which does not
exist. The nane of the field together with the specific request
are used to report the error.

D splay an Existing Entry

Enter Title:Wrd Star
An entry with the Title Wird Star coul d not be | ocated.
Ei t her you have msspeled it or it was never entered in the file.

Press any key to continue

Di splay existing entry screen (no error)
This is a normal request to display an entry.

D splay an Existing Entry

Enter Title: Easy Witer

Conpany : WMarketed by | BM

Title : Easy Witer

Usage : Word processing

Nunber of disks : 2

Rating : 6

Backup : N

Comments : A primtive word processor

Press any key to continue

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

Renove entry screen

Al ways when the nessage "Enter Title" appears a check is made if
that entry exists. |If the entry does not exist the result is the
sanme as that denonstrated in the display entry (wth error).

Renove an Existing Entry

Enter Titl e: Sidekick
Nane Del et ed

Press any key to continue

Al phabetical |isting screen

This is a listing after the entry Sidekick was renoved fromthe
list. The conplex internal operations are totally invisible to
t he user.

Li st Al phabeticaly

Conpany : WMarketed by | BM

Title : Easy Witer

Usage : Word processing

Nunber of disks : 2

Rating : 6

Backup : N

Comments : A primtive word processor

Conpany : Ashton Tate

Title : Franmework |1

Usage : Integrated Software

Nunmber of disks : 7

Rating : 9.6

Backup : Y

Comrents : An easy to use, powerfull integrated package

Conpany : Lotus research
Title : Lotus 123 Rel ease 2
Usage : Spreadsheet

Nunmber of disks : 5

Rating : 9.3
Backup : Y
Comments : Powerfull, fast but conpl ex

Press any key to continue

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

Edi ting screen

When editing an entry the user is asked if he wishes to change a
specific field. 1In the case of an affirnmative answer the nessage
di sappears and the nanme of the field appear. Then the user acts
as if he was entering the field for the first tine.

Edit an Existing Enty

Enter Title: Franework 11
A d contents of entry :

Conpany : Ashton Tate

Title : Franmework |1

Usage : Integrated Software

Nunmber of disks : 7

Rating : 9.6

Backup : Y

Comrents : An easy to use, powerfull integrated package

Enter Title: Franmeork 11
Ent er new Conpany(Y/ N) ?

Edi ting screen

If the user does not wish does change a field he replies with
"N'. then the nessage again disappears and is replaced with the
old contents of that field.

Edit an Existing Enty

Enter Title: Franework 11
A d contents of entry :

Conpany : Ashton Tate

Title : Franmework |1

Usage : Integrated Software

Nunmber of disks : 7

Rating : 9.6

Backup : Y

Comrents : An easy to use, powerfull integrated package

Enter Title: Franeork I
Conpany: Asht on Tate
Usage: I ntegrated Software
Nunmber of di sks:

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

Quit screen

This is what appears on the screen when the programre ends.

End of the Database Managenent System

You are rem nded of the necessity of frequent backups of your data
10.3 Sone testing

Sonme notes on the testing

Because of the conplexity of the algorithns

used an

extensive testing of the programme was required. In order to nmake
the file structure visible so that | could check the way a
particul ar procedure worked a special non- docunent ed,
non-user-oriented procedure was created. This was the eXan ne
file procedure which displayed the contents of the index file (by

far the nost conplex file of the system in a manner that

understand. Alnost all the errors in the programme |ogic were
| ocated with the aid of this procedure. Sonme screens with the use
of this procedure follow. Again the notes that |I have added to

t hose screens are witten in bold characters.

Exam ne 1

These are the contents of the file after the sanple session. The
Si dekick entry is a deleted entry and is thus pointed by the left
node of Rec #0. No other deleted entries exist and so the
Sidekicks left node is 0. The tree in use starts from Rec #4 which
is pointed by the right node of Rec #1. This entry is Lotus 123.
Easy Witer has a smaller value than Lotus so it is pointed by the
left node of Lotus. On the other hand because "F' follows "E'
Framework is pointed by the right node of Easy Witer. Al other
nodes are 0 signalling that no other entries exist. The right
columm is conposed of pointers to the data file.

REC Key LEFT RI GHT Dat aPoi nt
0 3 0 0
1 0 4 0
2 Framewor k |1 0 0 0
3 Si deki ck 0 0 128
4 Lotus 123 Rel ease 2 5 0 256
5 Easy Witer 0 2 384

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

Exam ne 2

Here nore entries have been added. Note that the del eted records
linked |ist has been enptied (left node of Rec #0=0) and that the
Norton Utilities have taken the place of the entry of the del eted
Sidekick. The reader is encouraged to examne the tree structure
by plotting a tree di agram

REC Key LEFT RI GHT Dat aPoi nt
0 0 0 0
1 0 4 0
2 Frameork |1 0 15 0
3 Norton Utilities 7 6 128
4 Lotus 123 Rel ease 2 5 3 256
5 Easy Witer 8 2 384
6 Sargon |11 16 9 512
7 M crosoft Wrd 12 0 640
8 Cross Tal k 10 0 768
9 Synphony 0 11 896
10 Aut oCAD 0 0 1024
11 TopVi ew 0 13 1152
12 M crosoft C 18 0 1280
13 Tur bo Pascal 0 14 1408
14 S MARTWORK 17 0 1536
15 Hitchi kers guide... 0 0 1664
16 Professional Editor 0 0 1792
17 m cro Prol og 0 0 1920
18 Macro Assenbler 4.0 0 0 2048
Exam ne 3
In the followng two screens the progranme Sargon |1l is deleted
and this shows the creation of the "deleted" |inked |ist.
REC Key LEFT RI GHT Dat aPoi nt
0 6 0 0
1 0 4 0
2 Frameork |1 0 15 0
3 Norton Utilities 7 9 128
4 Lotus 123 Rel ease 2 5 3 256
5 Easy Witer 8 2 384
6 Sargon |11 0 9 512
7 M crosoft Wrd 12 0 640
8 Cross Tal k 10 0 768
9 Synphony 16 11 896
10 Aut oCAD 0 0 1024
11 TopVi ew 0 13 1152
12 M crosoft C 18 0 1280
13 Tur bo Pascal 0 14 1408
14 S MARTWORK 17 0 1536

15 Hit
16 Pro
17

18 Mac

Exam ne 4

Her e Set

REC

Lot

OCO~NOUITRAWNEFLO

15 Hit
16 Pro

18 Mac

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

chi kers gui de. .. 0 0 1664
fessional Editor 0 0 1792

m cro Prol og 0 0 1920
ro Assenbler 4.0 0 0 2048

FX-Plus has taken the place of the deleted record #6.

Key LEFT RI GHT Dat aPoi nt
0 0 0
0 4 0
Frameork |1 0 15 0
Norton Utilities 7 9 128
us 123 Rel ease 2 5 3 256
Easy Witer 8 2 384
Set FX-Pl us 0 0 512
M crosoft Wrd 12 0 640
Cross Tal k 10 0 768
Synphony 16 11 896
Aut oCAD 0 0 1024
TopVi ew 0 13 1152
M crosoft C 18 0 1280
Tur bo Pascal 0 14 1408
S MARTWORK 17 0 1536
chi kers gui de. .. 0 0 1664
fessional Editor 0 6 1792
m cro Prol og 0 0 1920
ro Assenbler 4.0 0 0 2048

11 Evaluation of conputer results
11.1 Speed

The progranme behaved in a fast manner w thout del ays after
an operation was requested. Wth |arger databases snall anmounts
of delay were observed. Although the inportance of the tree
bal ance can not be underestimated it is generally believed that
the data structure used was suitable for the specific task. No
eval uati on was done on non di sk base operations as these take a
m ni mum anmount of tinme. The biggest tine burden was the disk
access tinme which was pressed down to a 1|og2(n) tinme increase
factor for n records (assumng a perfectly bal anced tree).

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

11.2 Space

The space overhead of the database files was divided into
two parts. 1) the structure file which has a fixed |ength during
all the life of the database and should normally not concern us.
2) the index file which grows together with the database file. In
the index file 6 bytes are used for every record stored. In that
figure the length of the key field should be added. For databases

with a very large anount of very small records this organization
IS wunsuitable. However wth databases with a relatively |arge
record length the index file takes up only a small anount of the

total disk space occupied by the data.

11.3 Al gorithm

The al gorithnms used can not be <correctly evaluated w thout
taking into account the size of the database to be used. For a
smal | database (up to 40 records) the procedures used are clearly
a waste of tinme, space, reliability and progranmng effort.
However for | arger databases (which should usually be the case as
small ones do not justify the cost of being conputerised in the
first place) the algorithnms justify the effort of designing them
Very | arge dat abases (such as a conputerised police record) are
al so unsuitable for this programe. This is furthernore true as
no provisions have been taken for record |ocking as would be
needed in a multi-tasking environnment. CGenerally these algorithns
are very suitable for nedium size dat abases.

12 Evaluation of user interface
12.1 Screen design

The screens are usually self explaining. The questions are
asked in a precise non technical manner. However for the sake of
sinplicity many things that seemtrivial to someone who has sone
experience wth conputers are not explained on the screen (such
as the need to press the Return button after an input). Sone
trai ning and docunentation i s necessary.

12.2 Input Validation

The input is validated in all places. Wong inputs are not
accepted at all fromthe keyboard (e.g. letters in the place of
nunbers) or when a nunerical entry is entered that is wong the
user s pronpted to reenter it. No error nessages are usually
di splayed. Al options that are not available for a specific
conbination of inputs pronpt this so the possibility for an
internal systemerror is mnimsed. The only kind of errors which
have not been taken care of are the input-output errors such as a

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

faulty disk drive or even a non-selected printer. These errors
shoul d be dealt by the operating system

12.3 Security

No security neasures have been provided such as passwords
or codi ng procedures. These neasures nake the user over confident
of the security and can usually very easily be short circuited by
an experienced conputer user. It is better for the user to guard
the data in the old fashioned way on which he has a full control
he can easily understand the security that is provided. E.g. one
can lock the diskettes in a drawer or even in a save.

The backup of the data is left to the operating system but
the wuser is pronpted to its necessity after each programe
sessi on.

12.4 Docunentation

Three |l evels of docunentation would be needed for this
progr amre.

1) Techni cal docunmentation ained to soneone who shoul d have
to maintain the programme. This should include a listing of the
programme with remarks and notes on the procedures and data
structures wused. Flow charts and pseudo-code tables should be
provi ded. This report has sonme of this information.

2) User docunentation which should be used by soneone who
woul d set up the database at a specific site. It should include
sone technical information as it is assuned that this type of
user has sone experience and can solve sone elenentary problens
that could arise. (He could be a nenber of the EDP departnent of
a conpany).

3) End user docunentation. This is provided for the person

which will ultimately use the programe and should be very
detail ed i ncluding annotated keyboard diagrans and sanple
screens. This should also include a tutorial nmanual. In an ideal

situation this docunentation should nake the docunentation (2)
obsol et e.

13 Evaluation of the project
13.1 GCeneral

Thi s proj ect gave me the opportunity to solve an
information processing problem of a sonme conplexity and to
understand the interaction of the various aspects of the problem
The testing of the programme whi ch consuned nore than 60% of the
time | spend on this project was a valuable exercise. Even nore
interesting was the witing of the report which was a summation
of all the experience | had gained during the creation of the
progr amre.

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

13.2 Further enhancenents

Many are the enhancenents that could be introduced into a
project of this kind. One major problemwth binary trees is that
of the tree balancing. 1In a balanced tree all nodes on the tree
frontier differ at nost by one level. The shape of the tree is
determned by the way new entries arrive and by the other
operations that are perforned on it, e.g. deletions. In a worst
case situation where all entries arrive in a sorted manner the
tree search wll behave exactly like a linear search. Various

met hods exist for balancing a tree. Most of the require
reordering the tree structure by a series of operations perforned
at various levels. | feel that such a procedure is beyond the

scope of this project.

The input interface could have been expanded to all ow i nput
fromother programres (inporting). This would allow the database
to accept data that would be outputed fromthe redirection of the
out put of anot her programme. Provisions would be needed for the
parsing of the record to fields and for the inclusion of various
delimters that are inplenented in other systens |like the basic
comma and quotes delimters.

A nore effective way to cope wth the deletion of entries
would be to inplenent a file crunch procedure. |In that way the
length of the file would always reflect the actual contents of it
and not the contents of the deleted entries. However the
shortening of a file is an issue particularly unpopular in al
operating systens. Ot her operating systens do not inplenent it at
all and require the file to be copied in another and the old one
del et ed whereas others need a special procedure to conpact the
di sk space after the alternation of a file |ength.

Anot her i nprovenent of the progranme would be to use a nore
nodern tree structure like B+trees or AVL trees. These structures
overconme many deficiencies of the binary tree file structure but
i npose ot her problens such as nore conplex algorithns or wasted
disk space. | believe that for this case the binary tree file
structure is a fair conprom se

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

14 Bi bl i ogr aphy

acm conputi ng surveys Vol une 6 Nunmber 3 Septenber 1974

J. Nievergelt Binary Search Trees and File O gani zation

Brian W Kernighan, Dennis M Ritchie

The C Progranm ng Language, Prentice Hall Software Series

Ceoff Vincent, JimGll

Sof t war e Devel opnent Handbook, Texas I nstrunents

UCSD p- System I ntroduction

Regents of the University of California and Sof Tech M crosystens
UCSD p- System Qper ati ng System Ref erence Manual

Regents of the University of California and Sof Tech M crosystens
UCSD p- System Confi guration

Regents of the University of California and Sof Tech M crosystens
personal conputing wth UCSD p- System

Regents of the University of California and Sof Tech M crosystens
The Scope for Automatic Data Processing in the British Library
Departnent of education and science

London Her Majesty’s Stationary Ofice 1972

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

15 Appendi x A (Programme)
PROGRAM dbase(| NPUT, QUTPUT) ;

{
G C.E. A Level Conputing Science (105) Paper 3

At hens Col | ege (GCE School) Athens G eece
Centre Nunber : 92060

Title of Project : Data Base Managenent System

Pr ogr anmer : Diomdis D. Spinellis

Pur pose and scope of the project : This systemallows the user to define and
use a custom desi gned dat abase. The follow ng features are available : Field
nam ng, record indexing, insertion, deletion, editing, display, search and
sorted listing of records. This project denonstrates the use of the binary
tree file indexing nethod used for speed and efficiency.

Dat abase file structure :
The Dat aBase consists of the followng files :
1. Structure File (.STR
It is file including the follow ng data :
No of fields (integer)
Field 1 Name (String)

Field 1 Iength (Integer)

Field 1 type (Character) (Validation type as explained in ValidRead)
Field 2 Nane

Field 2 le.

Field n type
Field on which the Database is indexed (integer)

2. Index File (.NDX)
It consists of entries of type IndexFileRec which point to the .DBF file
The first two records are not normal records.
Record O points to a linked list (by the left node) of the deleted itens.
Record 1 is a dumry record which serves as the root of the tree. It can
not be deleted and thus the search al ways begins fromit.

3. Database file (.DBF)
It contains all the records in a packed form

Limts :

Max nunmber of fields : 20 fields

Max field name length : 30 Characters
Max record | ength : 200 bytes

Max Key | ength : 30 Characters

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

(C) Copyright D omdis D. Spinellis 1985 1986

const
KeyLen=20;
MaxFi el dNunber =20;
MaxFi el dNameLengt h=30;
MaxRecor dLengt h=200;
MaxFi | eNanmeLengt h=80;
Max St ri ngLengt h=255;

type
KeyType=Stri ng[KeyLen];
Fi | eNaneType = string[MaxFi | eNaneLengt h];
Fi el dNameType = string[MaxFi el dNaneLengt h] ;
ConpareResult = (G eater, Less, Equal) ;
MaxString = string[255];

| ndexFi | eRec=Record

LeftBranch : Integer;
Ri ght Branch : | nteger;
Key KeyType,;
Dat aPoi nt | nt eger;
End;
Fi el dl nf oType Record
Nane stri ng[MaxFi el dNaneLengt h] ;
Lengt h | nt eger;
Val i dat e Char ;
end;

FileStrucType = Record

Fi el dNum | ndexFi el d, RecordLength : I nteger;

Fieldlinfo : array[l..MaxFi el dNunber] of Fi el dl nfoType;
end;

RecordString = string[MaxRecordLengt h];

(= o m }
Var

| ndexFil e FI LE OF | ndexFi | eRec;

Dat abaseFi | e File of Char;

StructureFile : Text;

Buf fer A Buffer_b,Buffer_C : IndexFil eRec;

FileStruc Fil eStrucType;

Root integer; {Root is the |local Variable changed by Search}

CODE, | i nt eger;

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

Nanme . KeyType;

C CC : Char;

PaddSt ri ng, O dDat aPack : RecordStri ng;

Dummy . Bool ean; {Used for function calls that return bool ean type}

Edi t : Boolean;{lf set the Readltem proc wll allow default entries}

Fil el nUse . Bool ean;
e }

function ValidRead(ValidType : Char ; StringLength : Integer) : MaxString ;
{Read a string with input length and type validation}
Const
Return = 13;
BackSpace =8 ;
Bell =7
Var
c : Char;
i : Integer;
Result : MaxString;

Function Valid(C : Char): Bool ean;
Var
Result : Bool ean;
begi n
Resul t : =Fal se;
case ValldType o]

f
"A If cin [A. ’Z’,’a’..’z’] then Result:=True; {Al pha}
'N : If cin [0 ..79 '+, -7, # ,7.7,","] then Result:=True; {Nuneric}
"D If cin['0.."9] t hen Result —True {Digit}
Y If cin["Y,)N,y ,'’n T ,’t’,”F ,’f’] then Result:=True; { YesNo}
= If cin[” ..~ then Result —True; {All the printable ASCI| set}
end;
Val i d: =Resul t;
end;
begln
=0;
Result:z”;
r epeat

Read(Kbd, O ;
| f C=Chr (BackSpace) then

if 1>0 then

begi n
Resul t : =Copy(Resul t, 1 Lengt h(Resul t)-1);
VVlte(Chr(BackSpace) ", Chr (BackSpace)) ;
i:=i-1;

end

el se
Wite(Chr(Bell))

el se

If Valid(c) and (i<StringLength) then

begi n
Resul t : =Concat (Resul t, c);
Wite(c);

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

o =i +1;
end
el se
if not (c=Chr(Return)) then
Wite(chr(Bell));
Until C=Chr(Return) ;
Val i dRead: =Resul t;
Witeln(');
end;

~=

procedure Pronpt(Nanme : MaxString);
{WI initialize the screen for the operation nanmed i n nane}

Wi teLh(Nane);
Witeln(Copy(------------ "o ", 1, Lengt h(Nane)));
WitelLn('’);

end;

function Upper(C : Char) : Char;
{Make C uppercase if required}
var
cc : char;
begi n
if (C=a) and (C<="z") then
cc:=chr(Ord(c)-Od(’a)+Ord(’A))
el se
cc: =c;
Upper : =cc;
end;

functi on Conpare(A B : KeyType) : ConpareResult;
{Conpare to entries of the index file acordi ng to ASCII col at i ng sequence and
return G eater Less or Equal}
begi n
if A>B then
Conpar e: =G eat er
else if A<B then
Conpar e: =Less

el se
Conpar e: =Equal ;
end;
T e
procedure | ndexRead(Were : Integer ; var Wat : |ndexFileRec);
{Read an entry fromposition Were in the index file into Wat}
begi n

Seek(| ndexFi | e, Where) ;
Read(| ndexFi | e, What) ;
end;

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

g
procedure I ndexWite(Were : Integer ; Wat : IndexFil eRec);

{Wite an entry to position Wiere in the index file from \Wat}

begi n

Seek(| ndexFi | e, Where);
Wite(lndexFile, Wiat);
end;

procedure | nitVars;
{Initialize gl obal vari abl es}

var
i : Integer;

begi n
PaddString: =’ ;
for i:=1 to MaxRecordLength do

PaddSt ri ng: =ConCat (PaddString,’ ’);
Edit: =False; {Only the edit function sets edit to true}
FiIeInLBe:zFaIse
end;

procedure OpenFil es;
{Open all database fil es}
Var
Fi | eNane, St ruct ur eNane, Dat abaseNane, | ndexNane : Fil eNaneType;

Begi n
Wite(’' File nane :’)'
Fi | eName: =Val i dRead(’ E' , MaxFi | eNaneLengt h) ;
St ruct ur eNane: ConCat(Fllehbne,’.STRju
Dat abaseNane: =ConCat (Fi | eNane, ’ . DBF') ;
| ndexNane: =ConCat (Fi | eNane,’ . NDX') ;
Assign(StructureFile, StructureNane);
Assi gn(Dat abaseFi | e, Dat abaseNane) ;
Assi gn(1l ndexFi | e, | ndexNane) ;
end;

Procedure C oseFil es;
{C ose all Database files}
begi n
Cl ose(I ndexFil e);
Cl ose(Dat abaseFi |l e);
Cl ose(StructureFile);
Fil el nUse: =Fal se;
end;

Procedure PrepareNewFi | e;
{Initializes all Database files}

Procedure PrepareStructureFile;

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

Var
| ndexFi el d, I, Fi el dNunber, Fi el dLengt h, RecordLength : | nteger;
Fi el dName : Fi el dNaneType;
Fi el dType : Char;
Nunber I nStringForm : String[20];
Eval Result : Integer;

begi n

Repeat
Wite(’ Nunber of fields (1-’', MaxFi el dNunber,’) :7);
Nunber I nStri ngForm =Val i dRead(’' D , 5);
Val (Nunber I nStri ngFor m Fi el dNunber, Eval Resul t) ;

until (Fi el dNunber <=MaxFi el dNunber) and (Fi el dNunber >0) ;

WitelLn(StructureFile, Fi el dNunber);

Recor dLengt h: =0;

For i:=1 to Fiel dNunber Do

begi n
Wite('Enter field ',i,’ nanme :’);
Fi el dNane: =Val i dRead(’ E' , MaxFi el dNaneLengt h) ;
r epeat

Wite('Enter field length (up to ', MaxRecordLengt h- RecordLength,’)
Nunber I nStri ngForm =Val i dRead(’' D , 5);
VaI(NunberInStrlngForn]FleIdLength EvaIResuIt)
until RecordLengt h+Fi el dLengt h<MaxRecor dLengt h;
Wite('Field type : A(l phabetic N(unmeric D(igit Y(es/No E(verything :");
r epeat
Read(Kbd, Fi el dType);
Fi el dType: =Upper (Fi el dType) ;
until FieldType in ["A,’"N,'D,'Y ,'E];
Witel n(Fi el dType);
Recor dLengt h: =Recor dLengt h+Fi el dLengt h;
WiteLn(StructureFil e, Fi el dNane);
WiteLn(StructureFil e, FieldLength);
WiteLn(StructureFile, FieldType);
end;
r epeat
Wite(’'Index on which field (1-', FieldNunber,’) :’);
Nunber I nStri ngForm =Val i dRead(’' D , 5);
Val (Nunber I nStri ngForm | ndexFi el d, Eval Resul t) ;
until (I ndexFi el d>0) and (1 ndexFi el d<=Fi el dNunber);
Witeln(StructureFil e, | ndexField);
end;

Procedure Preparel ndexFil e;
Var
| :integer;
Begi n
Buf f er _A. Lef t Branch: =0;
Buf f er _A. Ri ght Branch: =0;
For 1:=1 TO KeyLen Do
Buf fer _A. Key[i]:=chr(0);
Buf f er _A. Dat aPoi nt : =0;
Wite(lndexFile, Buffer A)
| ndexWite(1, Buf f er _A;

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

End;

begi n
OpenFi | es;
Rewrite(StructureFile);
Rew it e(Dat abaseFi |l e);
Rewrite(l ndexFile);
PrepareStructureFil e;
Pr epar el ndexFi | e;
Cl oseFi | es;

end;

Procedure UseFil e;
{Prepares the programto use an old data file}
begi n
OpenFi | es;
Reset (StructureFile);
Reset (Dat abaseFi | e);
Reset (I ndexFi | e);
ReadLn(StructureFile, FileStruc. Fi el dNum ;
Fil eStruc. RecordLengt h: =0;
For i:=1 to FileStruc. Fi el dNum Do
begi n
Readl n(StructureFile, FileStruc. Fieldlnfo[i].Nane);
Readl n(StructureFile, FileStruc. Fieldlnfo[i].Length);
Readl n(StructureFile,FileStruc. Fieldlnfo[i].Validate);
Fil eStruc. RecordLengt h: =Fi | eStruc. Recor dLengt h +
FileStruc. Fieldlinfo[i].Length
end;
Readl n(StructureFile, FileStruc. | ndexFi el d);
Fi | el nUse: =Tr ue;
end;

procedure DataRead(ltenNum : Integer ; var DataPack : RecordString);
{Read data fromposition ItemNumin the database file into DataPack}
var
i : integer;
c : Char;
begi n
seek(Dat abaseFil e, |t emNum ;
Dat aPack: ="' ;
For i:=1 to FileStruc. RecordLength do
begi n
Read(Dat abaseFi |l e, O) ;
Dat aPack: =Concat (Dat aPack, C) ;
end;
end;

Procedure Displaylten(ltemNum : |nteger);
{Display the contents of the itemlocated in postion I[temNumin DBF fil e}

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

Var
Dat aPack : RecordString ;
i , Dat aPackPos : i nteger;
begi n
WitelLn(’’);

Dat aRead(| t emNum Dat aPacKk) ;
Dat aPackPos: =1,

For i:=1 to FileStruc. Fi el dNum do
begi n
Wite(FileStruc.Fieldinfo[i]. S

Wit eLn(Copy(Dat aPack, DataPackPos FlleStruc Fieldlnfo[i].Length));
Dat aPackPos: =Dat aPackPos+Fi | eSt r uc. Fieldlnfo[i].Length;
end;
end;

Functi on KeyNane : KeyType;
{Returns the nane of the field onto which the database is indexed}
begi n
KeyNane: =Fi | eStruc. Fi el dI nfo[Fi | eStruc. | ndexFi el d] . Nane
end;

Procedur e Not FoundError(Nanme : KeyType);
{Reports an error if entry with key name Nanme was no found}
begi n
WiteLn(’ An entry with the ’,Keynane,’” ', Nane,’ could not be located.’);
WitelLn(’' Either you have msspeled it or it was never entered in the file.”);
end;

functi on ReadKeyNane : KeyType ;
{Returns the nane of the record the user wants to act uppon}
Var
Key : KeyType;
begi n
Wite(' Enter ', KeyNane,':’);
Key: =Val i dRead(’ E' , KeyLen) ;
ReadKeyNane: =Key;
end;

Procedure Readltem(ltenNum : Integer ; Key : KeyType);
{Reads all the contents of a record. If Edit is true allows default responses
acording to the variable O dDataPack. ItemNum points to the database fil e}
Var

Dat aPack, Dat aRead : RecordString;

i , Dat aPackPos : integer;
c : Char;
function Padd(What : RecordString) : RecordString;
begi n
Padd: =Copy(Concat (Wat , PaddStri ng), 1, MaxRecor dLengt h) ;
end;

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

function Mn(a,b : Integer) : Integer;
begi n
if a>b then Mn:=b else Mn: =3a;
end;
begi n
seek(Dat abaseFil e, |t emNum ;
Dat aPack: ="' ;
For i:=1 to FileStruc. Fi el dNum do
begi n

If i=FileStruc.I|ndexField Then
Dat aRead: =Key
el se
If Edit then
begi n
Wite('Enter new ' ,FileStruc.Fieldinfo[i].Nanme,’ (YN ?);
Repeat
Read(Kbd, O ;
until cin[’Y ,’y","N,'n] ;
Del Li ne;
Got oXY(1, Wher eY) ;
If (c=N) or (c="n") then
begi n
Dat aRead: =Copy(A dDat aPack, Lengt h(Dat aPack) +1,
FileStruc. Fieldlnfo[i].Length);
Wite(FileStruc.Fieldlinfo[i].Nanme,’ :");
Wit eLn(Dat aRead) ;
end {No Change}
el se
begi n
Wite(FileStruc.Fieldinfo[i].
Dat aRead: =Val i dRead(Fi | eStruc. F| eI dI nf o[i].Validate,
FileStruc. Fieldlnfo[i].Length);
end; {Change}

end {If edit}
el se {No edit}
begi n
Wite(FileStruc.Fieldinfo[i]. ")
Dat aRead: =Val i dRead(Fi | eStr uc. F| eI dI nf o[i].Validate,
FileStruc. Fieldlnfo[i].Length);
end; {No edit}
Dat aPack: =ConCat (Dat aPack, Copy(Padd(Dat aRead), 1,
FileStruc.Fieldlnfo[i].Length));

end; {for i}
For i:=1 to FileStruc. RecordLength do
Wit e(Dat abaseFi | e, Dat aPack[i]);
end;

Procedure List(Node:integer);
{Goes throught the tree structure in the collating sequence manner}
Var

Buffer : I ndexFil eRec;

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

Begi n
| ndexRead(Node, Buf fer);
| f Buffer.LeftBranch<>0 Then
Li st (Buffer. LeftBranch);
Di spl ayl t em(Buf f er. Dat aPoi nt) ;
| f Buffer.Ri ght Branch<>0 Then
Li st (Buf fer. R ght Branch);
End;

Function Search(Key: KeyType) : i nt eger;

{Return the Position of Key in file, O If not existing.

Al so set the global Variable Root to the Root of the record or where the
nonexi sting record should be hanged.}

Var
Pos: i nt eger;
Found, Stil | O her s: Bool ean;

Begi n
Found: =Fal se;
Still & hers: =True;
Pos: =1;
Root : =0;
Wiile Still & hers and not Found Do
Begi n
| ndexRead(Pos, Buffer_A);
case Conpare(Buffer_A Key, Key) of
Equal :
Begi n
Found: =Tr ue;
Sear ch: =Pos;
End;

G eater
Begi n
Root : =Pos;
| f Buffer_ A LeftBranch<>0 Then
Pos: =Buf f er _A. Left Branch
El se
Begi n
Still O hers: =Fal se;
Sear ch: =0;
End;
End;

Less :
Begi n
Root : =Pos;
| f Buffer_ A Ri ght Branch<>0 Then
Pos: =Buf f er _A. R ght Branch
El se
Begi n
Still O hers: =Fal se;

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

Sear ch: =0;
End; {If}
End; {Less}
End; {Case}
End; {Wil e}
End; {Functi on}

Function Insert: Bool ean;

{Inserts a record into the file structure}

Var
| nsert Position, | ndexPos, Dat aPosition : integer;
Rec : I ndexFil eRec;
Key : KeyType;

Procedure FindlnsertPosition ;
{Sets InsertPosition to the position to insert a record and updates the
deleted linked list if needed .Buffer_B is destroyed . Also the DataPosition
for the database file is set }
Var
NewLi st Poi nter : |nteger;
Begi n
| ndexRead(0, Buf fer_B);
if Buffer_B.LeftBranch=0 Then
begin
| nsertPosition: =FileSize(lndexFile);
Dat aPosi ti on: =Fi | eSi ze(Dat abaseFi | e)
end
El se
Begi n
| nsert Position: =Buffer_B. LeftBranch;
| ndexRead(| nsert Position, Buffer_B);
Dat aPosi ti on: =Buf f er _B. Dat aPoi nt ;
NewLi st Poi nt er: =Buf f er _B. Left Branch;
| ndexRead(0, Buf fer_B);
Buf f er _B. Left Branch: =NewLi st Poi nt er;
| ndexWite(O, Buf fer_B)
end;
end;

Begi n

Key: =ReadKeyNarne;

| ndexPos: =Sear ch(Key) ;

| f 1 ndexPos=0 Then

Begi n
Fi ndl nsert Posi tion;
Readl t en{ Dat aPosi ti on, Key) ;
| ndexRead(Root , Buf fer _A);
Rec. Lef t Branch: =0;
Rec. Ri ght Branch: =0;
Rec. Dat aPoi nt : =Dat aPosi ti on;
Rec. Key: =Key;
case Conpare(Buffer_a. Key, Rec. Key) of

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

G eater :
Buf fer _A. LeftBranch: =l nsert Posi ti on;
Less :
Buf f er _A. Ri ght Branch: =I nsert Posi ti on;
end;
| ndexWite(Root, Buffer_A);
| ndexWite(lnsertPosition, Rec);
| nsert: =True,
End
El se
| nsert: =Fal se;
End;

Function Del et e(Key: KeyType) : Bool ean;
{Renpbves the record Key fromthe tree structure and returns True if it exists.
The record is al so appended to the deleted records |inked |ist}
Var
Del Pos, HangPos, Pos, Left :integer;
Dummy : Bool ean;

Procedur e Updat eDel et edLi st ;
Begi n
| ndexRead(0, Buf fer_B);
| ndexRead(Del Pos, Buffer_A);
{Check to see if already done (due to recursivness it is called twce)}
I f not (Buffer_B.LeftBranch=Del Pos) then
begin
{Make the deleted record point to the old del eted record}
Buf fer _A. Left Branch: =Buf fer_B. Left Branch;
{Make the start of the linked |ist point to the deleted record}
Buf f er _B. Lef t Branch: =Del Pos;
| ndexW it e(Del Pos, Buf fer_A);
| ndexWite(O, Buf fer_B)
end;
end;

Begi n
Del Pos: =Sear ch(Key) ;
| f not (Del Pos=0) Then
Begi n
| ndexRead(Del Pos, Buffer_a);
| f (Buffer_A LeftBranch=0) OR (Buffer_A R ghtBranch=0) Then
Begi n
| ndexRead(Root , Buf f er _B);
HangPos: =Buf f er _A. Lef t Branch+Buffer _A. Ri ghtBranch; {1 or 2 of them are 0}
Case Conpare(Buffer_B. Key, Key) of
Greater : Buffer_B. LeftBranch: =HangPos;
Less . Buffer_B. R ght Branch: =HangPos;
end;
| ndexW it e(Root, Buffer_B);
Del et e: =Tr ue;
End
El se

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

Begi n
{ save the left pointer and nmake it zero call Delete recursively
hang the node pointed by the left pointer where apropriate }
Left: =Buffer_A. LeftBranch;
Buf f er _A. Lef t Branch: =0;
| ndexW it e(Del Pos, Buf fer_A);
Dunmy: =Del et e(Buf f er _A. Key) ;
| ndexRead(Left, Buffer_A);
Pos: =Sear ch(Buf f er _A. Key);
{Pos should be zero because this node is now di sconnect ed}
| ndexRead(Left, Buffer_A);
| ndexRead(Root , Buffer_B); {Were this node should be hanged}
Case Conpare(Buffer_B. Key, Buf f er _A. Key) of
Greater : Buffer_B.LeftBranch: =Left;
Less . Buffer_B. R ghtBranch: =Left;
end;
| ndexW it e(Root, Buffer_B);
Del et e: =Tr ue;

End;
Updat eDel et edLi st ;
End
El se
Del et e: =Fal se;
End;
R e R EEEEE }
procedure OptionsScreen,;
{Pronpt the user the avail able options he can perform
begi n
ClrScr;
WiteLn(’' GCE A Level Conputer Science Project (C 1985,86 Diomdis D. Spin
WitelLn('’);
WitelLn(’ Dat a Base Managenent System);
WiteLn(’ e e e e oa oo "),
WitelLn(’’);
WitelLn('’);
WitelLn('’);
WiteLn(’ Avail able Options’);
WiteLn(’----------------- "),
WitelLn(’’);

WiteLn(' C(reate a new file');

WitelLn(’' U(se an existing data file’);

| f FilelnUse then

begi n
WiteLn(' A(dd a new entry’);
WiteLn(’' D(isplay an existing entry’);
WiteLn(’'L(ist Al phabeticaly’);
WitelLn(’ R(enove an existing entry’);
WiteLn('E(dit an existing entry’);

end;

WiteLn(’ Quit fromthe programe’);
WitelLn('’);

WitelLn('’);

WitelLn('’);

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

Wite(’ Sel ect operation by typing the options first letter ");
end;

I ni tVars;
r epeat
Opt i onsScr een;
r epeat
read(kbd, c);
c: =Upper(c);
until ((cin[’C,”’U,’A,’D,'"L'",”’R,"E,"Q@]) and FilelnUse) or
(cin["C,"U,"Q]);
WitelLn('’);
Case c of

'Q r {Quit}]
begi n
Prompt (" Quit’);
end;

"C : {Create new file}

Begi n
Pronpt (' Create a New File');
If FilelnUse then C oseFil es;
Pr epar eNewFi | e;

End;

"A : {Add new entry}
Begi n
Pronpt (" Add a New Entry’);
If Insert Then
WitelLn(’' Record Inserted’)
El se
WiteLn(’ Record already exists’);
End;

"D : {D splay}
Begi n
Pronpt (* Di splay an Existing Entry’);
Name: =ReadKeyNane;
| : =Sear ch(Nane) ;
I f (1<>0) Then
Begi n
| ndexRead(1, Buffer_A);
Di spl ayl t em(Buf f er _A. Dat aPoi nt) ;

End
El se
Not FoundEr r or (Nane) ;
End;
"L {list}
Begi n

Pronpt (’ Li st Al phabeticaly’);

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

| ndexRead(1, Buffer_A);
I f not (Buffer_ A RightBranch=0) then List(Buffer_A R ghtBranch);
End;

"R { Renove}
Begi n

Pronpt (' Renove an Exi sting Entry’);

Nane: =ReadKeyNane;

| f Del ete(Nanme) Then WitelLn(’ Name Del eted’) El se Not FoundError (Nane);
End;

"B {Edit}
Begi n
Pronpt (" Edit an Existing Enty’);
Nane: =ReadKeyNane;
| : =Sear ch(Nane) ;
I f (1<>0) Then
Begi n
| ndexRead(1, Buffer_A);
Dat aRead(Buffer A. Dat aPoi nt , A dDat aPack) ;
WiteLn(’' A d contents of entry),
Di spl ayl t em(Buf f er _a. Dat aPoi nt) ;
WitelLn(’’);
Dummy: =Del et e(Nan®e) ;
Edit:=True; {Allow default responses based on O dDat aPack}
Dumy: =l nsert;
Edit: =Fal se; {Di sable default responses for all other uses}
End
El se
Not FoundEr r or (Nane) ;
End;

U : {Use an old data fil e}

begi n
Pronpt (' Use an Existing Data File');
If FilelnUse then C oseFil es;
UseFi | e;

end;

Non docunmented feature is commented out for the official release. Was
extensively used as an examne file utility during progranme devel opnent
and debugi ng.
"X eXam ne
Begi n
RESET(| ndexFi | e);
| : =0,
WiteLn(' REC Key LEFT RI GHT Dat aPoi nt ") ;
WitelLn(’’);
VWi | e NOT(EC]:(I ndexFile)) Do
Begi n
Read(| ndexFi |l e, Buffer_A);
Wi teLn(I 5, Buf fer A. Key KeyLen Buf fer _A. Left Branch: 5,
Buffer A Ri ght Branch: 5, , Buf f er _A. Dat aPoi nt : 5) ;

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

| :=1+1,
End
End;

End;

WitelLn('’);

Wite(' Press any key to continue ') ;

Read(Kbd, CC) ;

WitelLn('’);
until CG Q ;
If FilelnUse then C oseFil es;
ClrScr;

WiteLn(’ End of the Database Managenent Systemni);
WiteLn(’ You are rem nded of the necessity of frequent backups of your data');
WitelLn('’);

End.

ADVANCED LEVEL COVPUTI NG SCI ENCE PROJECT

16 Appendi x B (Technical details)

This report was witten using an |BM PC personal conputer
and the Franework integrated software package. An outline was
first constructed and then all the part of it were filled. Wen
t hought of a new aspect that should be covered | just opened a
new frame on the corresponding outline entry. The spelling
checker together with a conputing dictionary were used to verify
the spelling. The view page pagi nation al ways kept me infornmed of
the amount | had witten.

All the frames were used with the word justify feature on
and with a paragraph indent of 6 characters.

17 Appendi x C (Trademnarks)

M5 DOS is a registered trademark of M crosoft Corp.

IBMis a registered trademark of International Business Machi nes
Cor p.

UNI X is a trademark of AT&T Bell Laboratories

Appl e and Apple Il are registered trademarks of Apple Conputer
I nc.

VM5 is a trademark of Digital Equi pment Corp

Framework 1l and Fred are trademarks of Ashton-Tate

UCSD, UCSD Pascal and UCSD p-Systemare all trademarks of the
Regents of the University of California.

Turbo Pascal and Sidekick are trademarks of Borland Inc.

O her nanes of products which could be trademarks may have been
used in the text. They have been used for reference purposes
only.

