
 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 Abstract

 A file handling system which allows the user to
 define a database according to his own needs is
 described. The operations on the database include the
 ability to append new entries, modify them as well as
 delete unwanted ones and list the entries in a sorted
 order. In order to meet this end the binary tree file
 structure was used and appropriate algorithms were
 designed and implemented. Included is a full
 description of the data structures and algorithms
 used. The whole project was tested and its
 performance evaluated.

 Name : Diomidis D. Spinellis
 School or College : Athens College (GCE School)
 Centre Number : 92060
 Candidate Number : __________________
 Title of Project : Database Management System

 - 1 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 1 Summary of purpose and scope of the project

 1.1 Need

 In a society where people are living in organised
 communities one is often overwhelmed by the mass of data one
 encounters when one deals with various aspects of our lives. The
 human memory which was once a reliable way to organise any
 activity is incapable to deal with most data connected situations
 in our modern world.
 Various filing systems have been used over the years to
 deal with this problem. Most of them relied on the printed word
 and the ability to store many pages in a small space. Typical
 examples are the telephone directories and the library
 catalogues. These filing systems have usually arranged their
 entries in some predefined order (usually alphabetic) and so, one
 can easily locate the entry one is looking for. Some of them,
 like a book index or a library catalogue, are usually just look
 up tables for larger databases.
 These systems have various inefficiencies. Namely they
 consume much space, are difficult to use and many of them are
 difficult to update (Encyclopedias and telephone directories are
 reprinted at periodic intervals).
 With the advent of the microcomputer and the availability
 of cheap mass storage media the computerising of these databases
 has become feasible.

 1.2 Purpose

 The purpose of this project is to demonstrate this
 capability by designing a system that would allow the user to
 define and use a database. The following features seem to be
 useful : Field naming, record indexing, insertion, deletion,
 display and editing of entries as well as a sorted listing of
 them.
 Furthermore this project should demonstrate the use of the
 binary tree file indexing method which should provide speed and
 efficiency.

 2 First some terms ...

 It would seem appropriate at this point to discuss some
 terms that will widely be used during the next pages.

 File : is a set of structured data and in this text it will
 always be associated with its presence in the backing store
 (disk).
 Record : will be used to identify one entry in the file.

 - 2 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 Field : each record is subdivided in fields. Each field
 which consists of one or more bytes contains different types of
 information.
 Tree : is a way to structure data. Every data item contains
 pointers to other data items and here each data item has only one
 pointer associated with it. Thus the whole structure resembles
 the form of a tree.
 Binary tree : binary trees are a special kind of trees. On
 them each item points to zero one or two other items.
 Node or leaf or branch : is the name that is given in this
 project to the pointer which points to the next items in the
 tree.
 Root : every item in the tree with the exception of the
 first one is pointed by another item .

 3 Discussion on the specifications

 The specifications seem reasonable and of the kind that can
 be implemented with the existing software, hardware and
 expertise. It seems that an analysis of the goals, and more
 important, the shortcomings of the system, is something that will
 be needed because of the complexity of the task. A project of
 this size when made to fit around the 600 line guide will most
 probably have many shortcomings.
 However I believe that it will be useful on its own account
 as a pilot project for a complete database design. As for the
 aspect of reliability I can only quote one of Gilb’s laws
 of reliability "Investment in reliability will increase until it
 exceeds the probable cost of errors or until someone insists on
 getting some useful work done."

 4 Available hardware tools

 4.1 CPU

 The CPU to be used (Apple IIe 6502 based) is a typical von
 Newmann machine based on a microprocessor. It has the capability
 to work on 8 bit quantities (bytes) on various manners. It is
 connected to a modifiable random access memory and to a random
 access read only memory. Only one user can use the machine at a
 time so no provisions must be taken in order to implement
 resource sharing such as record locking, semaphoring and other
 multi-user or multi-tasking procedures. Almost inherent on the
 design of the machine and mainly based on the input/output
 devices is the collating sequence of the character set. The
 character set used is the ASCII character set and its order is
 used as a collating sequence. This sequence is used in order to
 compare to strings of bytes.

 - 3 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 4.2 Main storage

 The main storage is composed of 128k of random access
 modifiable memory. The access time for this memory is of the
 order of hundreds of nanoseconds. This storage will be used to
 hold the operating system, the program as well as the structure
 of the data-file and other variables. Two buffers are also
 allocated by the program . These buffers are used as a temporary
 storage for the index file contents during their manipulation. As
 the operating system provides the file buffering the area of the
 main memory which is used for file buffering is allocated by the
 operating system.

 4.3 Backing storage

 Two backing storage devices are available : A non removable
 Winchester disk drive and one 5 1/4 floppy disk drive. The hard
 disk drive has a capacity of 20M bytes and the floppy disk drive
 a capacity of 200K bytes .On both of them data is allocated in
 the form of clusters which are formed by the division of them in
 tracks, sectors and in the case of the hard disk drive in
 cylinders.
 The slowest operations on this type of media are the head
 movement which results from the stepping from one track to the
 next and the motor startup time (only for the floppy disk drive).
 So it will be of great advantage to the program a) if data is
 allocated in clusters on the same track and b) if the operating
 system buffers the read operation and stores e.g. one whole track
 after every read.

 4.4 Input

 The main input device for this microcomputer is the
 keyboard. It seems appropriate for this kind of project. The
 keyboard is directly connected to an I/O port of the CPU. All
 functions required to scan the keyboard matrix and translate the
 result to an ASCII code are handled by the built in ROM routines.
 A serial port is also available. Without programme
 modification it could be used to connect a bar code reader.
 Usually these devices come with software and/or hardware which
 "traps" the requests for a character read and supply their own
 output when needed. Thus no provisions are made for this kind of
 input device, although it can be very effectively used in various
 database usage environments, such as libraries, stores etc..

 4.5 Output

 The output devices are a Video Display Unit and a dot
 matrix impact printer .Both of them can display the full ASCII
 character set. The VDU supports advanced functions like direct

 - 4 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 cursor addressing and screen clearing. Although the printer
 supports dot addressable graphics, they will not be used.

 5 Available software tools

 5.1 Input Output system

 The I/O system is located in ROM. It handles all requests
 for the I/O devices including the printer Centronics protocol,
 the screen dual port memory access arbitration and the backing
 storage control in a primitive way. Functions like get a
 character or put a character or read/write a sector are
 available.

 5.2 Operating system

 The operating system is able to handle more complex tasks.
 The operating system is the UCSD P-system originally developed at
 the University of California San Diego and now distributed by
 SofTech Microsystems. It is composed by a kernel written in
 native code and a set of utilities and more advance functions
 written in a high level language, namely Pascal.
 A main advantage of this operating system is the
 portability it guarantees for all products that convey its
 standard because the language compilers it provides are not
 producing native code but an intermediate pseudo code called
 P-code. The P-code is implemented as an interpreted code in all
 machines and thus for the operating system to become available on
 a specific machine only a new P-code interpreter is needed. A
 disadvantage of the system is its slowness because of the
 interpreted code. Compared to other operating systems like UNIX
 MS-DOS or VMS it is rather primitive.
 Nevertheless it is able to handle I/O redirection and
 random access files which are used in this project. All I/O
 requests are transferred to the operating system via the Pascal
 compiler calls.

 5.3 Language

 The language used is the UCSD Pascal . UCSD Pascal is the
 Pascal variant used in the UCSD P-system. Pascal is suitable for
 this project because it supports data structuring and strong type
 checking. Strong type checking was especially useful in the early
 stages of the development where much of the checking for program
 consistency was done by the compiler. Pascal has rightly been
 described as a wilfully worn straightjacket. I believe that with
 the structured programming habits it imposes on the programmer
 self-documenting, clear, easy to understand and maintain programs
 are created.

 - 5 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 Two of the procedures used are recursive and because Pascal
 supports recursive procedure calling their logic is easily
 understandable. Records are used extensively and this makes the
 relationship between various data items more clear and easy to
 understand. Local variables eliminate the danger of a subroutine
 to inadvertently change a global variable and passing by
 reference allows subroutines the change the contents of
 variables. Sets have been used to a lesser extent mainly for
 input validation. While developing this project I thought of
 using variant records as a way to represent the varying users
 needs. However because variant records do not allow someone to
 define e.g. an array whose length would be known during the
 runtime, this idea was abandoned.
 All the structuring constructs were used i.e. IF THEN, IF
 THEN ELSE, WHILE DO, FOR DO, REPEAT UNTIL, CASE etc.. Each one of
 them proved its usefulness in many situations. The GOTO statement
 was not used at all. A small inconvenience was created by the
 absence of a statement like the return() statement in the C
 programming language which allows the programme flow to exit from
 any point of a function. Thus many functions are nested in IF
 THEN ELSE blocks only because an error was found at the beginning
 of the function.

 6 Data structures employed

 6.1 Memory

 The following structure types are used :

 The index file as well as the memory buffers are composed of
 IndexFileRex. It should be noted that all pointers that point to
 nothing have the reserved value of 0. This is composed as follows
 :
 IndexFileRec=Record
 LeftBranch : Integer; Pointer to the left node.
 RightBranch : Integer; Pointer to the rigth node.
 Key : KeyType; Key on which the file is indexed.
 DataPoint : Integer; Pointer to the database file.
 End;

 The information of each field is stored in a record which
 contains the name of the field, its length and the validation
 type. The validation type can be any of the following :
 ’A’ [’A’..’Z’,’a’..’z’] Alpha.
 ’N’ [’0’..’9’,’+’,’-’,’#’,’.’,’,’] Numeric.
 ’D’ [’0’..’9’] Digit.
 ’Y’ [’Y’,’N’,’y’,’n’,’T’,’t’,’F’,’f’] Yes or No True or
 false.
 ’E’ [’ ’..’~’] Everything. All the ASCII set.

 The record named FieldInfo is defined as follows :
 FieldInfoType = Record
 Name : string[];

 - 6 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 Length : Integer;
 Validate : Char;
 end;

 The information about the whole file structure is stored in
 a record of FileStrucType which holds the number of fields, the
 record length and the field on which the database is indexed.
 Moreover it holds an array of length as the maximum number of
 fields of field specific information as described above.

 FileStrucType = Record
 FieldNum,IndexField,RecordLength : Integer;
 FieldInfo : array[1..MaxFieldNumber] of FieldInfoType;
 end;

 6.2 Disk

 6.2.1 Structure file

 The structure file is a text file. Because of this it can
 easily be displayed and altered, something which can be an aid
 during the programme debuging. The file contains the following
 data :

 No of fields (integer)
 Field 1 Name (String)
 Field 1 length (Integer)
 Field 1 type (Character) (Validation type as explained in ValidRead)
 Field 2 Name
 Field 2 le...................................
 ...
 ...
 Field n type
 Field on which the Database is indexed (integer)

 6.2.2 Index file

 The index file is a random access file which consists of
 entries of type IndexFileRecType. These are stored one after the
 other. The first two records are not holding any user
 information. They are more fully described in the initialization
 section.

 6.2.3 Data file

 The data file consists of characters in order to save
 space. The record length is variable and so a special procedure
 reads all fields in a procrustean manner i.e. chopping the long
 ones and padding the short ones before they are written to the
 data file. This results in huge space savings as one can easily

 - 7 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 imagine when one thinks of a telephone directory with a record
 length of 200 characters.

 7 Description of the algorithm

 7.1 Search

 In order to locate an entry in the index file the following
 algorithm was used :
 While there are other entries and the entry is not found
 Read an entry
 Compare the two keys
 greater : new position is right pointer
 less : new position is left pointer
 equal : entry found
 If the new position is 0 there are no other entries
 end
 If the new position is 0 then
 the entry was not found
 else
 the entry was found.

 During the whole search a global variable named root points
 to the previous file position. This serves two purposes : a) If
 the entry is found the root position is known and can be used by
 a procedure, such as delete, to eliminate the data links, and b)
 If the entry is not found, the root obviously reflects the
 nearest point where the key should be and can thus be used by
 procedures such as the insert procedure.

 7.2 Insert

 The insert procedure is relatively simple because it uses
 much information of the search procedure. First of all I check
 and verify that the entry is not already present. After that I
 allocate space on the file for the new entry. The space can be
 allocated from two sources. Either from an already deleted entry
 that is unlinked from the deleted entries linked list - or if
 such an entry does not exist - the new entry is directly appended
 to the end of the file. After that, and based on the global
 variable Root which after the search call indicates the entry
 where the new entry should be hanged the only thing needed is to
 find out which of the two nodes of the Root entry must point to
 the new entry. This is easily found by comparing the two keys.
 Subsequently the Root entry is modified to point to the new
 entry.

 - 8 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 7.3 Delete

 7.3.1 General

 The delete procedure was the one that I found the most
 difficult in this project. Two were the main difficulties that I
 encountered. First of all the problem of removing an entry from
 the binary tree without ruining the tree structure and secondly
 the problem of re-usage of the space. The first problem was
 divided in three different situations which I will shortly
 explain. The second problem was solved with the use of a linked
 list. When an entry has been deleted the pointers have no more
 use. So I started A linked list using as pointers the left
 pointers of all deleted entries starting with the left pointer of
 the dummy record #0. This linked list is updated for the sake of
 simplicity from its start i.e. from the entry #0 both for
 insertion and for deletion. This is not the most elegant solution
 because now the linked list works as a LIFO storage (Last in
 first out). This means that the last entry deleted will be the
 first entry to be reused and this makes it impossible to add an
 undelete feature to the programme.
 In order to add an item to the linked list entry #0 is
 simply made to point to this item and the left pointer of this
 item holds the old contents of the left pointer of entry #0. As
 usual the reserved value of 0 means that this is the last entry.

 7.3.2 No nodes

 Now I will consider the different aspects of the delete
 operation. One entry can have by definition zero, one or two
 nodes. The easiest case is that where an entry has zero nodes.
 In that case in order to remove the entry from the tree structure
 the pointer of its root which points to it is simply assigned the
 value of 0.

 7.3.3 One node

 A more difficult problem occurs when the entry point to one
 and only one entry. As one can easily understand this segment of
 the tree resembles a linked list so the only way to remove an
 entry from its middle is to make its predecessor point to its
 successor. This is what the delete procedure does in this case.
 In order to minimise the decision making paths one small trick is
 used : The successor pointer is found by adding the left and the
 right pointers of the entry as one of them is guaranteed to be
 zero.

 - 9 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 7.3.4 Two nodes

 The most difficult situation occurs when an entry is
 surrounded by others i.e. it has two successors. Obviously the
 linked list algorithm can not be applied here. Instead another
 method is applied. For the sake of simplicity this method is
 composed as a hybrid between the deletion of one node and the
 insertion of another. The routine works as follows : I assume
 that this entry has only on successor. For that purpose I save
 the other successor pointer in a local variable and then I zero
 the pointer. I may now call the delete procedure recursively
 which will apply the one-node strategy and thus return to this
 point after having removed the entry from the tree. What now
 remains is one successor which is completely out of the tree
 structure. I now proceed to insert this successor into the tree
 structure in the normal manner. Now the tree structure is left
 intact.

 7.4 List

 The list procedure was implemented because of its nature in
 a totaly recursive way. Assume that eone wants to list a specific
 entry. If the left node of the entry is non zero one will have to
 list that entry first. After that the current entry must be
 displayed and then the right node entry must be listed (if it
 exists). So I am now ready to discuss the elements of this
 recursive strategy approach .
 a) Reduction : The problem list(entry) is reduced to the
 problem list(entry left node), display entry, list(entry right
 node).
 b) Termination : The recursive process terminates when one
 of the nodes is zero something which is true for the whole tree
 frontier.
 A more formal proof of this procedure is beyond the scope
 of this project.

 7.5 Edit

 In order to minimise the code complexity the editing is
 composed of a deletion of the entry to be edited and after that a
 new insertion. Because of the way the deleted space is used no
 space waste is done. This method has two disadvantages : a) the
 order of the tree is disturbed and a series of edit operations
 may yield to an unbalanced tree b) It is time consuming.
 However this method has a serious advantage over any other
 method. It allows the user to alter the key name if he so wishes.
 Before the insert procedure is called the global variable
 Edit is set to the value True and the old contents of the entry
 are read into the global variable OldDataPack . The read data
 procedure behaves in a different way under these circumstances.
 Namely before each entry it asks the user if he wishes to change

 - 10 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 it or not. Only in the case the user wishes to modify the
 contents the routine asks him to re-enter them. This saves some
 amount of repetitive typing.

 7.6 Initialize

 7.6.1 General

 When a new file is created the three data files must be
 initialized. This is performed immediately after the creation in
 order to avoid unnecessary program complexity during all
 operations. The data structures in the files are designed in such
 a way so that after initialization the file will always appear
 the same to all procedures. Having to take into account during
 the search or the delete procedure whether the file is empty or
 not would double the procedures complexity.

 7.6.2 Structure file

 The structure file is filled with validated entries which
 show the number of fields per record and the name, length and
 type of each field. It is made sure that the total length of all
 fields does not exceed 200 characters and that no type that does
 not exist is entered. The field onto which the whole data file is
 indexed is also recorded.

 7.6.3 Index file

 The index file is initialized by being filled with two
 dummy records. Dummy record #0 is a place holder which ensures
 that no pointer will ever take the reserved value of 0. This
 value has the special meaning that there exists no other entry
 for the specific chain. One other use of the record #0 is to mark
 the beginning of the deleted items linked list. As the file is
 empty and no deleted items exist it takes the value of zero. Thus
 when a deleted item is added to the chain it will take the value
 of zero and thus mark the end of the linked list. In this way the
 linked list add remove algorithm is simplified.
 The second record that is initialized is record #1. This
 record is made to contain a blank entry which can not be entered
 by the user. Both nodes are made to point to zero. This second
 record exists so that I will always know the beginning (root) of
 the tree. If that was to be a user entered record I would have to
 provide a way to distinguish between an empty file and a non
 empty file during insert and I would have to hold the start of
 the tree in a separate variable because this entry could also be
 deleted. It is obvious that programme complexity is minimised by
 the use of this strategy. The greater search time is independent
 of the search length and we can thus ignore it.

 - 11 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 7.6.4 Database file

 The database file is just pointed by the index record and
 it needs no other initialization other than the ReWrite procedure
 that will remove its old contents (if any).

 7.7 Analogies between algorithm and human behaviour

 After having described all the algorithms used in this
 project it would be interesting to observe if any analogies
 between this system and other non-machine assisted systems exist.
 One system that suits our purpose is that of the library
 catalogue. When one wants to find an entry in a card based system
 one opens the card drawer and looks at the front card. Most
 probably the book one is searching for is not there. After that
 one may take two actions. Either he will guess the cards
 approximate position by taking into account the letter on which
 the card index started and the letter he is searching for (which
 is an approximation to the hashing algorithm - not implemented in
 this project) or, most likely,he will look at the card in the
 middle of the drawer. He will then proceed either to the cards in
 front of the middle or those on the back of the middle each time
 halving his distance from the entry he is searching for.
 This is an approximation to the binary tree searching
 algorithm that I have implemented in the project. Having found
 the entry he is searching one will now look at the number of the
 shelf where the book can be found. The analogy with looking at
 the index to the database file from the indexfile is too obvious!

 8 Data validation and error analysis

 8.1 Input validation

 During all user entries the programme validates the entry
 so that it is of a legal value. This is done by calling a special
 procedure which only allows validated entry. Furthermore the
 numerical entries are checked to be within specific bounds.

 8.2 Internal validation

 The programme is not designed in a vary robust way towards
 internal errors. For example a node that would point to its self
 would make the programme crash. For this reason this programme is
 not recommended for heavy or critical use. Moreover the programme
 lacks the ability to correct errors in the structure of the file.
 The only measure that has been taken to avoid such errors
 is the stringent testing of the programme and the validation of
 the user inputs.

 - 12 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 8.3 User validation

 The ultimate user of this programme will be someone who has
 little or no experience with automatic data processing (e.g. a
 librarian). For this reason the programme enables the person who
 designs the database to specify the kind of fields he wishes to
 use and more important their type.
 In this way the ultimate user of the programme will not be
 allowed to enter letters in a numeric field or a number in a
 Yes/No field.

 8.4 Programme limits

 In order to cope with the need to declare the array length
 before the compilation certain limits had to be imposed. The use
 of pointers and dynamic memory allocation would make the whole
 programme too complex without making it much better. (It would
 only marginally effect its capabilities). The following limits
 were decided. As all the limits are coded as constants into the
 programme it will be relatively easy to change them if one so
 wishes.
 Maximum number of fields : 20 fields
 Maximum field name length : 30 characters
 Maximum record length : 200 bytes
 Maximum Key length : 30 characters

 9 Programme

9.1 Procedures and functions

function ValidRead(ValidType : Char ; StringLength : Integer) : MaxString ;
Read a string with input length and type validation

procedure Prompt(Name : MaxString);
Will initialize the screen for the operation named in name i.e. Clear the
screen and write the name on the top.

function Upper(C : Char) :;
Make C uppercase if required

function Compare(A,B : KeyType) : CompareResult;
Compare to entries of the index file according to ASCII collating sequence and
return Greater Less or Equal

procedure IndexRead(Where : Integer ; var What : IndexFileRec);
Read an entry from position Where in the index file into What

procedure IndexWrite(Where : Integer ; What : IndexFileRec);
Write an entry to position Where in the index file from What

procedure InitVars;

 - 13 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

Initialize global variables

procedure OpenFiles;
Open all database files

Procedure CloseFiles;
Close all Database files

Procedure PrepareNewFile;
Initializes all Database files by creating new ones. The user
specifies their characteristics.

Procedure UseFile;
Prepares the program to use an old data file by reading the
structure file contents

procedure DataRead(ItemNum : Integer ; var DataPack : RecordString);
Read data from position ItemNum in the database file into DataPack

Procedure DisplayItem(ItemNum : Integer);
Display the contents of the item located in position ItemNum in DBF file

Function KeyName : KeyType;
Returns the name of the field onto which the database is indexed

Procedure NotFoundError(Name : KeyType);
Reports an error if entry with key name Name was no found

function ReadKeyName : KeyType ;
Returns the name of the record the user wants to act upon

Procedure ReadItem(ItemNum : Integer ; Key : KeyType);
Reads all the contents of a record. If Edit is true allows default responses
according to the variable OldDataPack. ItemNum points to the database file

Procedure List(Node:integer);
Goes through the tree structure in the collating sequence manner

Function Search(Key:KeyType):integer;
Return the Position of Key in file, 0 If not existing.
Also set the global Variable Root to the Root of the record or where the
nonexisting record should be hanged.

Function Insert:Boolean;
Inserts a record into the file structure. Return False if it exists.

Function Delete(Key:KeyType):Boolean;
Removes the record Key from the tree structure and returns True if it exists.
The record is also appended to the deleted records linked list.

procedure OptionsScreen;
Prompt the user the available options he can perform

 - 14 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 9.2 Programme body

 The programme body is a big repeat-until loop. The options
 available to the user are displayed and the user presses the
 first letter of the option he wishes to use. When no file has
 been selected only three options are available. The user may
 either create a new file or use an existing file or quit to the
 system. After an existing file has been chosen the user may
 specify all other options such as add a new entry or view all
 entries.

 10 A sample session

 10.1 Some technical information

 In the following pages a sample session is displayed. The
 screens that are printed are real screens from the programme.
 They were generated in the following manner: The programme was
 compiled on an IBM-PC with a Turbo-Pascal compiler. After that
 the programme Sidekick was loaded as a memory resident programme.
 This programme offers the capabilities of a Note-Pad, a
 Calculator, a Calendar and an ASCII table at any instant of the
 computers operation. When the database programme started running
 and the first screen appeared I entered Sidekicks Note-Pad
 feature. This Note-Pad is like a word processor that opens a
 window on the screen one is operating. It has the capability to
 import things from the background screen (which was the database
 system screen). So I imported the screen and saved it on the
 disk. In this way 15 screens were created. The interesting thing
 was that a look at the directory of the disk showed me that not
 only had I captured samples of the most important screens of the
 programme but furthermore I had a specific timetable of the whole
 operation as the MS-DOS marks the dates and times of all files.
 In the following screens I have inserted some comments. These are
 written in bold characters. No other editing was performed.

10.2 Thirty minutes with the programme

Directory of files produced

 Name Size Time Comments
START 375 9:30a ;Starting screen
CREATE 1215 9:39a ;Create a new file screen
USE 105 9:40a ;Use an existing file screen
SCREEN2 494 9:42a ;Starting screen with file in use
ADD1 251 9:43a ;Add new entry screen
ADD2 113 9:46a ;Add new entry screen
ADD3 247 9:49a ;Add new entry screen
LIST 750 9:51a ;Alphabetical listing
DISP1 231 9:52a ;Display existing entry screen (with error)
DISP2 268 9:53a ;Display existing entry screen (no error)
REMOVE 118 9:54a ;Remove entry screen

 - 15 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

LIST2 574 9:57a ;Alphabetical listing screen
EDIT1 331 9:59a ;Editing screen
EDIT2 371 10:00a ;Editing screen
QUIT 106 10:00a ;Quit screen

 Starting screen

 GCE A Level Computer Science Project (C) 1985,86 Diomidis D. Spinellis

 Data Base Management System

 Available Options

 C(reate a new file
 U(se an existing data file
 Q(uit from the programme

 Select operation by typing the options first letter
 The starting screen (Only three options are available)

 Create a new file screen

 - 16 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 - 17 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 The create a new file screen. Some erroneous entries were made to
 demonstrate the input validation. It should be noted that some
 errors could not be made to appear on the screen as the programme
 would just refuse to accept illegitimate characters.

 Create a New File

 File name :programs
 Number of fields (1-20) :0 <-Error in entry (too small)
 Number of fields (1-20) :30 <-Error in entry (too large)
 Number of fields (1-20) :7
 Enter field 1 name :Company
 Enter field length (up to 200) :25
 Field type :A(lphabetic N(umeric D(igit Y(es/No E(verything :E
 Enter field 2 name :Title
 Enter field length (up to 175) :176
 Enter field length (up to 175) :20
 Field type :A(lphabetic N(umeric D(igit Y(es/No E(verything :E
 Enter field 3 name :Usage
 Enter field length (up to 155) :30
 Field type :A(lphabetic N(umeric D(igit Y(es/No E(verything :E
 Enter field 4 name :Number of disks
 Enter field length (up to 125) :3
 Field type :A(lphabetic N(umeric D(igit Y(es/No E(verything :D
 Enter field 5 name :Rating
 Enter field length (up to 122) :4
 Field type :A(lphabetic N(umeric D(igit Y(es/No E(verything :N
 Enter field 6 name :Backup
 Enter field length (up to 118) :1
 Field type :A(lphabetic N(umeric D(igit Y(es/No E(verything :Y
 Enter field 7 name :Comments
 Enter field length (up to 117) :45
 Field type :A(lphabetic N(umeric D(igit Y(es/No E(verything :E
 Index on which field (1-7) :8 <-Error (non-existing field)
 Index on which field (1-7) :0 <-Error (too small)
 Index on which field (1-7) :2

 Press any key to continue

 Use an existing file screen

 No checking is done for the existence of the file in order to make
 the programme more portable.

 Use an Existing Data File

 File name :programs

 Press any key to continue

 - 18 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 Starting screen with file in use

 Now new options have been made available. Note that other keys
 than those with which an option starts are ignored.

 GCE A Level Computer Science Project (C) 1985,86 Diomidis D. Spinellis

 Data Base Management System

 Available Options

 C(reate a new file
 U(se an existing data file
 A(dd a new entry
 D(isplay an existing entry
 L(ist Alphabeticaly
 R(emove an existing entry
 E(dit an existing entry
 Q(uit from the programme

 Select operation by typing the options first letter

 Add new entry screen

 A new entry is added. A check is made that the entry does not
 already exist.

 Add a New Entry

 Enter Title:Framework II
 Company:Ashton Tate
 Usage:Integrated Software
 Number of disks:7
 Rating:9.6
 Backup:Y
 Comments:An easy to use, powerfull integrated package
 Record Inserted

 Press any key to continue

 Add new entry screen (with error)

 - 19 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 - 20 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 Here the entry already existed.

 Add a New Entry

 Enter Title:Framework II
 Record already exists

 Press any key to continue

 Add new entry screen

 Add a New Entry

 Enter Title:Sidekick
 Company:Borland International
 Usage:Memory resident add on
 Number of disks:1
 Rating:9.2
 Backup:Y
 Comments:Very usefull, a real time saver
 Record Inserted

 Press any key to continue

 Alphabetical listing

 A sorted listing of the file.

 List Alphabeticaly

 Company : Marketed by IBM
 Title : Easy Writer
 Usage : Word processing
 Number of disks : 2
 Rating : 6
 Backup : N
 Comments : A primitive word processor

 Company : Ashton Tate
 Title : Framework II
 Usage : Integrated Software
 Number of disks : 7
 Rating : 9.6
 Backup : Y
 Comments : An easy to use, powerfull integrated package

 Company : Lotus research
 Title : Lotus 123 Release 2

 - 21 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 Usage : Spreadsheet
 Number of disks : 5
 Rating : 9.3
 Backup : Y
 Comments : Powerfull, fast but complex

 Company : Borland International
 Title : Sidekick
 Usage : Memory resident add on
 Number of disks : 1
 Rating : 9.2
 Backup : Y
 Comments : Very usefull, a real time saver

 Press any key to continue

 Display existing entry screen (with error)

 Here I request to see an entry of a programme which does not
 exist. The name of the field together with the specific request
 are used to report the error.

 Display an Existing Entry

 Enter Title:Word Star
 An entry with the Title Word Star could not be located.
 Either you have misspeled it or it was never entered in the file.

 Press any key to continue

 Display existing entry screen (no error)

 This is a normal request to display an entry.

 Display an Existing Entry

 Enter Title:Easy Writer

 Company : Marketed by IBM
 Title : Easy Writer
 Usage : Word processing
 Number of disks : 2
 Rating : 6
 Backup : N
 Comments : A primitive word processor

 Press any key to continue

 - 22 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 Remove entry screen

 Always when the message "Enter Title" appears a check is made if
 that entry exists. If the entry does not exist the result is the
 same as that demonstrated in the display entry (with error).

 Remove an Existing Entry

 Enter Title:Sidekick
 Name Deleted

 Press any key to continue

 Alphabetical listing screen

 This is a listing after the entry Sidekick was removed from the
 list. The complex internal operations are totally invisible to
 the user.

 List Alphabeticaly

 Company : Marketed by IBM
 Title : Easy Writer
 Usage : Word processing
 Number of disks : 2
 Rating : 6
 Backup : N
 Comments : A primitive word processor

 Company : Ashton Tate
 Title : Framework II
 Usage : Integrated Software
 Number of disks : 7
 Rating : 9.6
 Backup : Y
 Comments : An easy to use, powerfull integrated package

 Company : Lotus research
 Title : Lotus 123 Release 2
 Usage : Spreadsheet
 Number of disks : 5
 Rating : 9.3
 Backup : Y
 Comments : Powerfull, fast but complex

 Press any key to continue

 - 23 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 Editing screen

 When editing an entry the user is asked if he wishes to change a
 specific field. In the case of an affirmative answer the message
 disappears and the name of the field appear. Then the user acts
 as if he was entering the field for the first time.

 Edit an Existing Enty

 Enter Title:Framework II
 Old contents of entry :

 Company : Ashton Tate
 Title : Framework II
 Usage : Integrated Software
 Number of disks : 7
 Rating : 9.6
 Backup : Y
 Comments : An easy to use, powerfull integrated package

 Enter Title:Frameork II
 Enter new Company(Y/N) ?

 Editing screen

 If the user does not wish does change a field he replies with
 "N". then the message again disappears and is replaced with the
 old contents of that field.

 Edit an Existing Enty

 Enter Title:Framework II
 Old contents of entry :

 Company : Ashton Tate
 Title : Framework II
 Usage : Integrated Software
 Number of disks : 7
 Rating : 9.6
 Backup : Y
 Comments : An easy to use, powerfull integrated package

 Enter Title:Frameork II
 Company:Ashton Tate
 Usage:Integrated Software
 Number of disks:

 - 24 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 Quit screen

 This is what appears on the screen when the programme ends.

 End of the Database Management System
 You are reminded of the necessity of frequent backups of your data

 10.3 Some testing

 Some notes on the testing

 Because of the complexity of the algorithms used an
 extensive testing of the programme was required. In order to make
 the file structure visible so that I could check the way a
 particular procedure worked a special non-documented,
 non-user-oriented procedure was created. This was the eXamine
 file procedure which displayed the contents of the index file (by
 far the most complex file of the system) in a manner that I could
 understand. Almost all the errors in the programme logic were
 located with the aid of this procedure. Some screens with the use
 of this procedure follow. Again the notes that I have added to
 those screens are written in bold characters.

 Examine 1

 These are the contents of the file after the sample session. The
 Sidekick entry is a deleted entry and is thus pointed by the left
 node of Rec #0. No other deleted entries exist and so the
 Sidekicks left node is 0. The tree in use starts from Rec #4 which
 is pointed by the right node of Rec #1. This entry is Lotus 123.
 Easy Writer has a smaller value than Lotus so it is pointed by the
 left node of Lotus. On the other hand because "F" follows "E"
 Framework is pointed by the right node of Easy Writer. All other
 nodes are 0 signalling that no other entries exist. The right
 column is composed of pointers to the data file.

 REC Key LEFT RIGHT DataPoint

 0 3 0 0
 1 0 4 0
 2 Framework II 0 0 0
 3 Sidekick 0 0 128
 4 Lotus 123 Release 2 5 0 256
 5 Easy Writer 0 2 384

 - 25 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 Examine 2

 Here more entries have been added. Note that the deleted records
 linked list has been emptied (left node of Rec #0=0) and that the
 Norton Utilities have taken the place of the entry of the deleted
 Sidekick. The reader is encouraged to examine the tree structure
 by plotting a tree diagram.

 REC Key LEFT RIGHT DataPoint

 0 0 0 0
 1 0 4 0
 2 Frameork II 0 15 0
 3 Norton Utilities 7 6 128
 4 Lotus 123 Release 2 5 3 256
 5 Easy Writer 8 2 384
 6 Sargon III 16 9 512
 7 Microsoft Word 12 0 640
 8 Cross Talk 10 0 768
 9 Symphony 0 11 896
 10 AutoCAD 0 0 1024
 11 TopView 0 13 1152
 12 Microsoft C 18 0 1280
 13 Turbo Pascal 0 14 1408
 14 smARTWORK 17 0 1536
 15 Hitchikers guide... 0 0 1664
 16 Professional Editor 0 0 1792
 17 micro Prolog 0 0 1920
 18 Macro Assembler 4.0 0 0 2048

 Examine 3

 In the following two screens the programme Sargon III is deleted
 and this shows the creation of the "deleted" linked list.

 REC Key LEFT RIGHT DataPoint

 0 6 0 0
 1 0 4 0
 2 Frameork II 0 15 0
 3 Norton Utilities 7 9 128
 4 Lotus 123 Release 2 5 3 256
 5 Easy Writer 8 2 384
 6 Sargon III 0 9 512
 7 Microsoft Word 12 0 640
 8 Cross Talk 10 0 768
 9 Symphony 16 11 896
 10 AutoCAD 0 0 1024
 11 TopView 0 13 1152
 12 Microsoft C 18 0 1280
 13 Turbo Pascal 0 14 1408
 14 smARTWORK 17 0 1536

 - 26 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 15 Hitchikers guide... 0 0 1664
 16 Professional Editor 0 0 1792
 17 micro Prolog 0 0 1920
 18 Macro Assembler 4.0 0 0 2048

 Examine 4

 Here Set FX-Plus has taken the place of the deleted record #6.

 REC Key LEFT RIGHT DataPoint

 0 0 0 0
 1 0 4 0
 2 Frameork II 0 15 0
 3 Norton Utilities 7 9 128
 4 Lotus 123 Release 2 5 3 256
 5 Easy Writer 8 2 384
 6 Set FX-Plus 0 0 512
 7 Microsoft Word 12 0 640
 8 Cross Talk 10 0 768
 9 Symphony 16 11 896
 10 AutoCAD 0 0 1024
 11 TopView 0 13 1152
 12 Microsoft C 18 0 1280
 13 Turbo Pascal 0 14 1408
 14 smARTWORK 17 0 1536
 15 Hitchikers guide... 0 0 1664
 16 Professional Editor 0 6 1792
 17 micro Prolog 0 0 1920
 18 Macro Assembler 4.0 0 0 2048

 11 Evaluation of computer results

 11.1 Speed

 The programme behaved in a fast manner without delays after
 an operation was requested. With larger databases small amounts
 of delay were observed. Although the importance of the tree
 balance can not be underestimated it is generally believed that
 the data structure used was suitable for the specific task. No
 evaluation was done on non disk base operations as these take a
 minimum amount of time. The biggest time burden was the disk
 access time which was pressed down to a log2(n) time increase
 factor for n records (assuming a perfectly balanced tree).

 - 27 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 11.2 Space

 The space overhead of the database files was divided into
 two parts. 1) the structure file which has a fixed length during
 all the life of the database and should normally not concern us.
 2) the index file which grows together with the database file. In
 the index file 6 bytes are used for every record stored. In that
 figure the length of the key field should be added. For databases
 with a very large amount of very small records this organization
 is unsuitable. However with databases with a relatively large
 record length the index file takes up only a small amount of the
 total disk space occupied by the data.

 11.3 Algorithm

 The algorithms used can not be correctly evaluated without
 taking into account the size of the database to be used. For a
 small database (up to 40 records) the procedures used are clearly
 a waste of time, space, reliability and programming effort.
 However for larger databases (which should usually be the case as
 small ones do not justify the cost of being computerised in the
 first place) the algorithms justify the effort of designing them.
 Very large databases (such as a computerised police record) are
 also unsuitable for this programme. This is furthermore true as
 no provisions have been taken for record locking as would be
 needed in a multi-tasking environment. Generally these algorithms
 are very suitable for medium size databases.

 12 Evaluation of user interface

 12.1 Screen design

 The screens are usually self explaining. The questions are
 asked in a precise non technical manner. However for the sake of
 simplicity many things that seem trivial to someone who has some
 experience with computers are not explained on the screen (such
 as the need to press the Return button after an input). Some
 training and documentation is necessary.

 12.2 Input Validation

 The input is validated in all places. Wrong inputs are not
 accepted at all from the keyboard (e.g. letters in the place of
 numbers) or when a numerical entry is entered that is wrong the
 user is prompted to reenter it. No error messages are usually
 displayed. All options that are not available for a specific
 combination of inputs prompt this so the possibility for an
 internal system error is minimised. The only kind of errors which
 have not been taken care of are the input-output errors such as a

 - 28 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 faulty disk drive or even a non-selected printer. These errors
 should be dealt by the operating system.

 12.3 Security

 No security measures have been provided such as passwords
 or coding procedures. These measures make the user over confident
 of the security and can usually very easily be short circuited by
 an experienced computer user. It is better for the user to guard
 the data in the old fashioned way on which he has a full control
 he can easily understand the security that is provided. E.g. one
 can lock the diskettes in a drawer or even in a save.
 The backup of the data is left to the operating system but
 the user is prompted to its necessity after each programme
 session.

 12.4 Documentation

 Three levels of documentation would be needed for this
 programme.
 1) Technical documentation aimed to someone who should have
 to maintain the programme. This should include a listing of the
 programme with remarks and notes on the procedures and data
 structures used. Flow charts and pseudo-code tables should be
 provided. This report has some of this information.
 2) User documentation which should be used by someone who
 would set up the database at a specific site. It should include
 some technical information as it is assumed that this type of
 user has some experience and can solve some elementary problems
 that could arise. (He could be a member of the EDP department of
 a company).
 3) End user documentation. This is provided for the person
 which will ultimately use the programme and should be very
 detailed including annotated keyboard diagrams and sample
 screens. This should also include a tutorial manual. In an ideal
 situation this documentation should make the documentation (2)
 obsolete.

 13 Evaluation of the project

 13.1 General

 This project gave me the opportunity to solve an
 information processing problem of a some complexity and to
 understand the interaction of the various aspects of the problem.
 The testing of the programme which consumed more than 60% of the
 time I spend on this project was a valuable exercise. Even more
 interesting was the writing of the report which was a summation
 of all the experience I had gained during the creation of the
 programme.

 - 29 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 13.2 Further enhancements

 Many are the enhancements that could be introduced into a
 project of this kind. One major problem with binary trees is that
 of the tree balancing. In a balanced tree all nodes on the tree
 frontier differ at most by one level. The shape of the tree is
 determined by the way new entries arrive and by the other
 operations that are performed on it, e.g. deletions. In a worst
 case situation where all entries arrive in a sorted manner the
 tree search will behave exactly like a linear search. Various
 methods exist for balancing a tree. Most of the require
 reordering the tree structure by a series of operations performed
 at various levels. I feel that such a procedure is beyond the
 scope of this project.
 The input interface could have been expanded to allow input
 from other programmes (importing). This would allow the database
 to accept data that would be outputed from the redirection of the
 output of another programme. Provisions would be needed for the
 parsing of the record to fields and for the inclusion of various
 delimiters that are implemented in other systems like the basic
 comma and quotes delimiters.
 A more effective way to cope with the deletion of entries
 would be to implement a file crunch procedure. In that way the
 length of the file would always reflect the actual contents of it
 and not the contents of the deleted entries. However the
 shortening of a file is an issue particularly unpopular in all
 operating systems. Other operating systems do not implement it at
 all and require the file to be copied in another and the old one
 deleted whereas others need a special procedure to compact the
 disk space after the alternation of a file length.
 Another improvement of the programme would be to use a more
 modern tree structure like B+trees or AVL trees. These structures
 overcome many deficiencies of the binary tree file structure but
 impose other problems such as more complex algorithms or wasted
 disk space. I believe that for this case the binary tree file
 structure is a fair compromise.

 - 30 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 14 Bibliography

 acm computing surveys Volume 6 Number 3 September 1974
 J. Nievergelt Binary Search Trees and File Organization
 Brian W. Kernighan, Dennis M. Ritchie
 The C Programming Language, Prentice Hall Software Series
 Geoff Vincent, Jim Gill
 Software Development Handbook, Texas Instruments
 UCSD p-System Introduction
 Regents of the University of California and SofTech Microsystems
 UCSD p-System Operating System Reference Manual
 Regents of the University of California and SofTech Microsystems
 UCSD p-System Configuration
 Regents of the University of California and SofTech Microsystems
 personal computing with UCSD p-System
 Regents of the University of California and SofTech Microsystems
 The Scope for Automatic Data Processing in the British Library
 Department of education and science
 London Her Majesty’s Stationary Office 1972

 - 31 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

15 Appendix A (Programme)

PROGRAM dbase(INPUT,OUTPUT);

{

G.C.E. A Level Computing Science (105) Paper 3

Athens College (GCE School) Athens Greece

Centre Number : 92060

Title of Project : Data Base Management System

Programmer : Diomidis D. Spinellis

 Purpose and scope of the project : This system allows the user to define and
use a custom designed database. The following features are available : Field
naming, record indexing, insertion, deletion, editing, display, search and
sorted listing of records. This project demonstrates the use of the binary
tree file indexing method used for speed and efficiency.

Database file structure :
The DataBase consists of the following files :
1. Structure File (.STR)
 It is file including the following data :
 No of fields (integer)
 Field 1 Name (String)
 Field 1 length (Integer)
 Field 1 type (Character) (Validation type as explained in ValidRead)
 Field 2 Name
 Field 2 le...................................
 ...
 ...
 Field n type
 Field on which the Database is indexed (integer)
2. Index File (.NDX)
 It consists of entries of type IndexFileRec which point to the .DBF file
 The first two records are not normal records.
 Record 0 points to a linked list (by the left node) of the deleted items.
 Record 1 is a dummy record which serves as the root of the tree. It can
 not be deleted and thus the search always begins from it.
3. Database file (.DBF)
 It contains all the records in a packed form.

Limits :
Max number of fields : 20 fields
Max field name length : 30 Characters
Max record length : 200 bytes
Max Key length : 30 Characters

 - 32 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 (C)Copyright Diomidis D. Spinellis 1985 1986

}
{---}
const
 KeyLen=20;
 MaxFieldNumber=20;
 MaxFieldNameLength=30;
 MaxRecordLength=200;
 MaxFileNameLength=80;
 MaxStringLength=255;

{---}
type
 KeyType=String[KeyLen];
 FileNameType = string[MaxFileNameLength];
 FieldNameType = string[MaxFieldNameLength];
 CompareResult = (Greater,Less,Equal);
 MaxString = string[255];

 IndexFileRec=Record
 LeftBranch : Integer;
 RightBranch : Integer;
 Key : KeyType;
 DataPoint : Integer;
 End;

 FieldInfoType = Record
 Name : string[MaxFieldNameLength];
 Length : Integer;
 Validate : Char;
 end;

 FileStrucType = Record
 FieldNum,IndexField,RecordLength : Integer;
 FieldInfo : array[1..MaxFieldNumber] of FieldInfoType;
 end;

 RecordString = string[MaxRecordLength];

{---}
Var
 IndexFile : FILE OF IndexFileRec;
 DatabaseFile : File of Char;
 StructureFile : Text;
 Buffer_A,Buffer_b,Buffer_C : IndexFileRec;
 FileStruc : FileStrucType;
 Root : integer; {Root is the local Variable changed by Search}
 CODE,I : integer;

 - 33 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 Name : KeyType;
 C,CC : Char;
 PaddString,OldDataPack : RecordString;
 Dummy : Boolean; {Used for function calls that return boolean type}
 Edit : Boolean;{If set the ReadItem proc will allow default entries}
 FileInUse : Boolean;

{---}

function ValidRead(ValidType : Char ; StringLength : Integer) : MaxString ;
{Read a string with input length and type validation}
Const
 Return = 13;
 BackSpace = 8 ;
 Bell = 7 ;
Var
 c : Char;
 i : Integer;
 Result : MaxString;

 Function Valid(C : Char):Boolean;
 Var
 Result : Boolean;
 begin
 Result:=False;
 case ValidType of
 ’A’ : If c in [’A’..’Z’,’a’..’z’] then Result:=True; {Alpha}
 ’N’ : If c in [’0’..’9’,’+’,’-’,’#’,’.’,’,’] then Result:=True; {Numeric}
 ’D’ : If c in [’0’..’9’] then Result:=True; {Digit}
 ’Y’ : If c in [’Y’,’N’,’y’,’n’,’T’,’t’,’F’,’f’] then Result:=True;{YesNo}
 ’E’ : If c in [’ ’..’~’] then Result:=True; {All the printable ASCII set}
 end;
 Valid:=Result;
 end;

begin
 i:=0;
 Result:=’’;
 repeat
 Read(Kbd,C);
 If C=Chr(BackSpace) then
 if i>0 then
 begin
 Result:=Copy(Result,1,Length(Result)-1);
 Write(Chr(BackSpace),’ ’,Chr(BackSpace));
 i:=i-1;
 end
 else
 Write(Chr(Bell))
 else
 If Valid(c) and (i<StringLength) then
 begin
 Result:=Concat(Result,c);
 Write(c);

 - 34 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 i:=i+1;
 end
 else
 if not (c=Chr(Return)) then
 Write(chr(Bell));
 Until C=Chr(Return) ;
 ValidRead:=Result;
 Writeln(’’);
end;

{---}
procedure Prompt(Name : MaxString);
{Will initialize the screen for the operation named in name}
begin
 ClrScr;
 WriteLn(Name);
 WriteLn(Copy(’---’,1,Length(Name)));
 WriteLn(’’);
end;

{---}
function Upper(C : Char) : Char;
{Make C uppercase if required}
var
 cc : char;
begin
 if (C>=’a’) and (C<=’z’) then
 cc:=chr(Ord(c)-Ord(’a’)+Ord(’A’))
 else
 cc:=c;
 Upper:=cc;
end;

{---}
function Compare(A,B : KeyType) : CompareResult;
{Compare to entries of the index file acording to ASCII colating sequence and
return Greater Less or Equal}
begin
 if A>B then
 Compare:=Greater
 else if A<B then
 Compare:=Less
 else
 Compare:=Equal;
end;

{---}
procedure IndexRead(Where : Integer ; var What : IndexFileRec);
{Read an entry from position Where in the index file into What}
begin
 Seek(IndexFile,Where);
 Read(IndexFile,What);
end;

 - 35 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

{---}
procedure IndexWrite(Where : Integer ; What : IndexFileRec);
{Write an entry to position Where in the index file from What}
begin
 Seek(IndexFile,Where);
 Write(IndexFile,What);
end;

{---}
procedure InitVars;
{Initialize global variables}
var
 i : Integer;
begin
 PaddString:=’’;
 for i:=1 to MaxRecordLength do
 PaddString:=ConCat(PaddString,’ ’);
 Edit:=False; {Only the edit function sets edit to true}
 FileInUse:=False;
end;

{---}
procedure OpenFiles;
{Open all database files}
Var
 FileName,StructureName,DatabaseName,IndexName : FileNameType;

Begin
 Write(’File name :’);
 FileName:=ValidRead(’E’,MaxFileNameLength);
 StructureName:=ConCat(FileName,’.STR’);
 DatabaseName:=ConCat(FileName,’.DBF’);
 IndexName:=ConCat(FileName,’.NDX’);
 Assign(StructureFile,StructureName);
 Assign(DatabaseFile,DatabaseName);
 Assign(IndexFile,IndexName);
end;

{---}
Procedure CloseFiles;
{Close all Database files}
begin
 Close(IndexFile);
 Close(DatabaseFile);
 Close(StructureFile);
 FileInUse:=False;
end;

{---}
Procedure PrepareNewFile;
{Initializes all Database files}

Procedure PrepareStructureFile;

 - 36 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

Var
 IndexField,I,FieldNumber,FieldLength,RecordLength : Integer;
 FieldName : FieldNameType;
 FieldType : Char;
 NumberInStringForm : String[20];
 EvalResult : Integer;

begin
 Repeat
 Write(’Number of fields (1-’,MaxFieldNumber,’) :’);
 NumberInStringForm:=ValidRead(’D’,5);
 Val(NumberInStringForm,FieldNumber,EvalResult);
 until (FieldNumber<=MaxFieldNumber) and (FieldNumber>0) ;
 WriteLn(StructureFile,FieldNumber);
 RecordLength:=0;
 For i:=1 to FieldNumber Do
 begin
 Write(’Enter field ’,i,’ name :’);
 FieldName:=ValidRead(’E’,MaxFieldNameLength);
 repeat
 Write(’Enter field length (up to ’,MaxRecordLength-RecordLength,’) :’);
 NumberInStringForm:=ValidRead(’D’,5);
 Val(NumberInStringForm,FieldLength,EvalResult);
 until RecordLength+FieldLength<MaxRecordLength;
 Write(’Field type :A(lphabetic N(umeric D(igit Y(es/No E(verything :’);
 repeat
 Read(Kbd,FieldType);
 FieldType:=Upper(FieldType);
 until FieldType in [’A’,’N’,’D’,’Y’,’E’];
 Writeln(FieldType);
 RecordLength:=RecordLength+FieldLength;
 WriteLn(StructureFile,FieldName);
 WriteLn(StructureFile,FieldLength);
 WriteLn(StructureFile,FieldType);
 end;
 repeat
 Write(’Index on which field (1-’,FieldNumber,’) :’);
 NumberInStringForm:=ValidRead(’D’,5);
 Val(NumberInStringForm,IndexField,EvalResult);
 until (IndexField>0) and (IndexField<=FieldNumber);
 Writeln(StructureFile,IndexField);
end;

Procedure PrepareIndexFile;
Var
 I:integer;
Begin
 Buffer_A.LeftBranch:=0;
 Buffer_A.RightBranch:=0;
 For I:=1 TO KeyLen Do
 Buffer_A.Key[i]:=chr(0);
 Buffer_A.DataPoint:=0;
 Write(IndexFile,Buffer_A);
 IndexWrite(1,Buffer_A);

 - 37 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

End;

begin
 OpenFiles;
 Rewrite(StructureFile);
 Rewrite(DatabaseFile);
 Rewrite(IndexFile);
 PrepareStructureFile;
 PrepareIndexFile;
 CloseFiles;
end;

{---}
Procedure UseFile;
{Prepares the program to use an old data file}
begin
 OpenFiles;
 Reset(StructureFile);
 Reset(DatabaseFile);
 Reset(IndexFile);
 ReadLn(StructureFile,FileStruc.FieldNum);
 FileStruc.RecordLength:=0;
 For i:=1 to FileStruc.FieldNum Do
 begin
 Readln(StructureFile,FileStruc.FieldInfo[i].Name);
 Readln(StructureFile,FileStruc.FieldInfo[i].Length);
 Readln(StructureFile,FileStruc.FieldInfo[i].Validate);
 FileStruc.RecordLength:=FileStruc.RecordLength +
 FileStruc.FieldInfo[i].Length
 end;
 Readln(StructureFile,FileStruc.IndexField);
 FileInUse:=True;
end;

{---}
procedure DataRead(ItemNum : Integer ; var DataPack : RecordString);
{Read data from position ItemNum in the database file into DataPack}
var
 i : integer;
 c : Char;
begin
 seek(DatabaseFile,ItemNum);
 DataPack:=’’;
 For i:=1 to FileStruc.RecordLength do
 begin
 Read(DatabaseFile,C);
 DataPack:=Concat(DataPack,C);
 end;
end;

{---}
Procedure DisplayItem(ItemNum : Integer);
{Display the contents of the item located in postion ItemNum in DBF file}

 - 38 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

Var
 DataPack : RecordString ;
 i,DataPackPos : integer;
begin
 WriteLn(’’);
 DataRead(ItemNum,DataPack);
 DataPackPos:=1;
 For i:=1 to FileStruc.FieldNum do
 begin
 Write(FileStruc.FieldInfo[i].Name,’ : ’);
 WriteLn(Copy(DataPack,DataPackPos,FileStruc.FieldInfo[i].Length));
 DataPackPos:=DataPackPos+FileStruc.FieldInfo[i].Length;
 end;
end;

{---}
Function KeyName : KeyType;
{Returns the name of the field onto which the database is indexed}
begin
 KeyName:=FileStruc.FieldInfo[FileStruc.IndexField].Name;
end;

{---}
Procedure NotFoundError(Name : KeyType);
{Reports an error if entry with key name Name was no found}
begin
 WriteLn(’An entry with the ’,Keyname,’ ’,Name,’ could not be located.’);
 WriteLn(’Either you have misspeled it or it was never entered in the file.’);
end;

{---}
function ReadKeyName : KeyType ;
{Returns the name of the record the user wants to act uppon}
Var
 Key : KeyType;
begin
 Write(’Enter ’,KeyName,’:’);
 Key:=ValidRead(’E’,KeyLen);
 ReadKeyName:=Key;
end;

{---}
Procedure ReadItem(ItemNum : Integer ; Key : KeyType);
{Reads all the contents of a record. If Edit is true allows default responses
acording to the variable OldDataPack. ItemNum points to the database file}
Var
 DataPack,DataRead : RecordString;
 i,DataPackPos : integer;
 c : Char;

function Padd(What : RecordString) : RecordString;
 begin
 Padd:=Copy(Concat(What,PaddString),1,MaxRecordLength);
 end;

 - 39 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

function Min(a,b : Integer) : Integer;
begin
 if a>b then Min:=b else Min:=a;
end;

begin
 seek(DatabaseFile,ItemNum);
 DataPack:=’’;
 For i:=1 to FileStruc.FieldNum do
 begin
 If i=FileStruc.IndexField Then
 DataRead:=Key
 else
 If Edit then
 begin
 Write(’Enter new ’,FileStruc.FieldInfo[i].Name,’(Y/N) ?’);
 Repeat
 Read(Kbd,C);
 until c in [’Y’,’y’,’N’,’n’] ;
 DelLine;
 GotoXY(1,WhereY);
 If (c=’N’) or (c=’n’) then
 begin
 DataRead:=Copy(OldDataPack,Length(DataPack)+1,
 FileStruc.FieldInfo[i].Length);
 Write(FileStruc.FieldInfo[i].Name,’:’);
 WriteLn(DataRead);
 end {No Change}
 else
 begin
 Write(FileStruc.FieldInfo[i].Name,’:’);
 DataRead:=ValidRead(FileStruc.FieldInfo[i].Validate,
 FileStruc.FieldInfo[i].Length);
 end; {Change}
 end {If edit}
 else {No edit}
 begin
 Write(FileStruc.FieldInfo[i].Name,’:’);
 DataRead:=ValidRead(FileStruc.FieldInfo[i].Validate,
 FileStruc.FieldInfo[i].Length);
 end; {No edit}
 DataPack:=ConCat(DataPack,Copy(Padd(DataRead),1,
 FileStruc.FieldInfo[i].Length));
 end; {for i}
 For i:=1 to FileStruc.RecordLength do
 Write(DatabaseFile,DataPack[i]);
end;

{---}
Procedure List(Node:integer);
{Goes throught the tree structure in the collating sequence manner}
Var
 Buffer : IndexFileRec;

 - 40 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

Begin
 IndexRead(Node,Buffer);
 If Buffer.LeftBranch<>0 Then
 List(Buffer.LeftBranch);
 DisplayItem(Buffer.DataPoint);
 If Buffer.RightBranch<>0 Then
 List(Buffer.RightBranch);
End;

{---}
Function Search(Key:KeyType):integer;
{Return the Position of Key in file, 0 If not existing.
Also set the global Variable Root to the Root of the record or where the
nonexisting record should be hanged.}

Var
 Pos:integer;
 Found,StillOthers:Boolean;

Begin
 Found:=False;
 StillOthers:=True;
 Pos:=1;
 Root:=0;
 While StillOthers and not Found Do
 Begin
 IndexRead(Pos,Buffer_A);
 case Compare(Buffer_A.Key,Key) of
 Equal :
 Begin
 Found:=True;
 Search:=Pos;
 End;

 Greater :
 Begin
 Root:=Pos;
 If Buffer_A.LeftBranch<>0 Then
 Pos:=Buffer_A.LeftBranch
 Else
 Begin
 StillOthers:=False;
 Search:=0;
 End;
 End;

 Less :
 Begin
 Root:=Pos;
 If Buffer_A.RightBranch<>0 Then
 Pos:=Buffer_A.RightBranch
 Else
 Begin
 StillOthers:=False;

 - 41 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 Search:=0;
 End; {If}
 End; {Less}
 End; {Case}
 End; {While}
End; {Function}

{---}
Function Insert:Boolean;
{Inserts a record into the file structure}
Var
 InsertPosition,IndexPos,DataPosition : integer;
 Rec : IndexFileRec;
 Key : KeyType;

Procedure FindInsertPosition ;
{Sets InsertPosition to the position to insert a record and updates the
deleted linked list if needed .Buffer_B is destroyed . Also the DataPosition
for the database file is set }
 Var
 NewListPointer : Integer;
 Begin
 IndexRead(0,Buffer_B);
 if Buffer_B.LeftBranch=0 Then
 begin
 InsertPosition:=FileSize(IndexFile);
 DataPosition:=FileSize(DatabaseFile)
 end
 Else
 Begin
 InsertPosition:=Buffer_B.LeftBranch;
 IndexRead(InsertPosition,Buffer_B);
 DataPosition:=Buffer_B.DataPoint;
 NewListPointer:=Buffer_B.LeftBranch;
 IndexRead(0,Buffer_B);
 Buffer_B.LeftBranch:=NewListPointer;
 IndexWrite(0,Buffer_B);
 end;
 end;

Begin
 Key:=ReadKeyName;
 IndexPos:=Search(Key);
 If IndexPos=0 Then
 Begin
 FindInsertPosition;
 ReadItem(DataPosition,Key);
 IndexRead(Root,Buffer_A);
 Rec.LeftBranch:=0;
 Rec.RightBranch:=0;
 Rec.DataPoint:=DataPosition;
 Rec.Key:=Key;
 case Compare(Buffer_a.Key,Rec.Key) of

 - 42 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 Greater :
 Buffer_A.LeftBranch:=InsertPosition;
 Less :
 Buffer_A.RightBranch:=InsertPosition;
 end;
 IndexWrite(Root,Buffer_A);
 IndexWrite(InsertPosition,Rec);
 Insert:=True;
 End
 Else
 Insert:=False;
End;

{---}
Function Delete(Key:KeyType):Boolean;
{Removes the record Key from the tree structure and returns True if it exists.
The record is also appended to the deleted records linked list}
Var
 DelPos,HangPos,Pos,Left :integer;
 Dummy :Boolean;

Procedure UpdateDeletedList;
 Begin
 IndexRead(0,Buffer_B);
 IndexRead(DelPos,Buffer_A);
 {Check to see if already done (due to recursivness it is called twice)}
 If not (Buffer_B.LeftBranch=DelPos) then
 begin
 {Make the deleted record point to the old deleted record}
 Buffer_A.LeftBranch:=Buffer_B.LeftBranch;
 {Make the start of the linked list point to the deleted record}
 Buffer_B.LeftBranch:=DelPos;
 IndexWrite(DelPos,Buffer_A);
 IndexWrite(0,Buffer_B);
 end;
 end;

Begin
 DelPos:=Search(Key);
 If not (DelPos=0) Then
 Begin
 IndexRead(DelPos,Buffer_a);
 If (Buffer_A.LeftBranch=0) OR (Buffer_A.RightBranch=0) Then
 Begin
 IndexRead(Root,Buffer_B);
 HangPos:=Buffer_A.LeftBranch+Buffer_A.RightBranch; {1 or 2 of them are 0}
 Case Compare(Buffer_B.Key,Key) of
 Greater : Buffer_B.LeftBranch:=HangPos;
 Less : Buffer_B.RightBranch:=HangPos;
 end;
 IndexWrite(Root,Buffer_B);
 Delete:=True;
 End
 Else

 - 43 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 Begin
 { save the left pointer and make it zero call Delete recursively
 hang the node pointed by the left pointer where apropriate }
 Left:=Buffer_A.LeftBranch;
 Buffer_A.LeftBranch:=0;
 IndexWrite(DelPos,Buffer_A);
 Dummy:=Delete(Buffer_A.Key);
 IndexRead(Left,Buffer_A);
 Pos:=Search(Buffer_A.Key);
 {Pos should be zero because this node is now disconnected}
 IndexRead(Left,Buffer_A);
 IndexRead(Root,Buffer_B); {Where this node should be hanged}
 Case Compare(Buffer_B.Key,Buffer_A.Key) of
 Greater : Buffer_B.LeftBranch:=Left;
 Less : Buffer_B.RightBranch:=Left;
 end;
 IndexWrite(Root,Buffer_B);
 Delete:=True;
 End;
 UpdateDeletedList;
 End
 Else
 Delete:=False;
End;

{---}
procedure OptionsScreen;
{Prompt the user the available options he can perform}
begin
 ClrScr;
 WriteLn(’GCE A Level Computer Science Project (C) 1985,86 Diomidis D. Spin
 WriteLn(’’);
 WriteLn(’ Data Base Management System’);
 WriteLn(’ ---------------------------’);
 WriteLn(’’);
 WriteLn(’’);
 WriteLn(’’);
 WriteLn(’Available Options’);
 WriteLn(’-----------------’);
 WriteLn(’’);
 WriteLn(’C(reate a new file’);
 WriteLn(’U(se an existing data file’);
 If FileInUse then
 begin
 WriteLn(’A(dd a new entry’);
 WriteLn(’D(isplay an existing entry’);
 WriteLn(’L(ist Alphabeticaly’);
 WriteLn(’R(emove an existing entry’);
 WriteLn(’E(dit an existing entry’);
 end;
 WriteLn(’Q(uit from the programme’);
 WriteLn(’’);
 WriteLn(’’);
 WriteLn(’’);

 - 44 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 Write(’Select operation by typing the options first letter ’);
end;

{===}
Begin
 InitVars;
 repeat
 OptionsScreen;
 repeat
 read(kbd,c);
 c:=Upper(c);
 until ((c in [’C’,’U’,’A’,’D’,’L’,’R’,’E’,’Q’]) and FileInUse) or
 (c in [’C’,’U’,’Q’]);
 WriteLn(’’);
 Case c of

 ’Q’ : {Quit}
 begin
 Prompt(’Quit’);
 end;

 ’C’ : {Create new file}
 Begin
 Prompt(’Create a New File’);
 If FileInUse then CloseFiles;
 PrepareNewFile;
 End;

 ’A’ : {Add new entry}
 Begin
 Prompt(’Add a New Entry’);
 If Insert Then
 WriteLn(’Record Inserted’)
 Else
 WriteLn(’Record already exists’);
 End;

 ’D’ : {Display}
 Begin
 Prompt(’Display an Existing Entry’);
 Name:=ReadKeyName;
 I:=Search(Name);
 If (I<>0) Then
 Begin
 IndexRead(I,Buffer_A);
 DisplayItem(Buffer_A.DataPoint);
 End
 Else
 NotFoundError(Name);
 End;

 ’L’ : {list}
 Begin
 Prompt(’List Alphabeticaly’);

 - 45 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 IndexRead(1,Buffer_A);
 If not (Buffer_A.RightBranch=0) then List(Buffer_A.RightBranch);
 End;

 ’R’ : {Remove}
 Begin
 Prompt(’Remove an Existing Entry’);
 Name:=ReadKeyName;
 If Delete(Name) Then WriteLn(’Name Deleted’) Else NotFoundError(Name);
 End;

 ’E’ : {Edit}
 Begin
 Prompt(’Edit an Existing Enty’);
 Name:=ReadKeyName;
 I:=Search(Name);
 If (I<>0) Then
 Begin
 IndexRead(I,Buffer_A);
 DataRead(Buffer_A.DataPoint,OldDataPack);
 WriteLn(’Old contents of entry :’);
 DisplayItem(Buffer_a.DataPoint);
 WriteLn(’’);
 Dummy:=Delete(Name);
 Edit:=True; {Allow default responses based on OldDataPack}
 Dummy:=Insert;
 Edit:=False; {Disable default responses for all other uses}
 End
 Else
 NotFoundError(Name);
 End;

 ’U’ : {Use an old data file}
 begin
 Prompt(’Use an Existing Data File’);
 If FileInUse then CloseFiles;
 UseFile;
 end;

{
Non documented feature is commented out for the official release. Was
extensively used as an examine file utility during programme development
and debuging.
 ’X’ : eXamine
 Begin
 RESET(IndexFile);
 I:=0;
 WriteLn(’ REC Key LEFT RIGHT DataPoint’);
 WriteLn(’’);
 While NOT(EOF(IndexFile)) Do
 Begin
 Read(IndexFile,Buffer_A);
 WriteLn(I:5,Buffer_A.Key:KeyLen,Buffer_A.LeftBranch:5,
 Buffer_A.RightBranch:5,’ ’,Buffer_A.DataPoint:5);

 - 46 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 I:=I+1;
 End
 End;
}

 End;
 WriteLn(’’);
 Write(’Press any key to continue ’) ;
 Read(Kbd,CC) ;
 WriteLn(’’);
 until C=’Q’ ;
 If FileInUse then CloseFiles;
 ClrScr;
 WriteLn(’End of the Database Management System’);
 WriteLn(’You are reminded of the necessity of frequent backups of your data’);
 WriteLn(’’);
End.

 - 47 -

 ADVANCED LEVEL COMPUTING SCIENCE PROJECT

 16 Appendix B (Technical details)

 This report was written using an IBM PC personal computer
 and the Framework integrated software package. An outline was
 first constructed and then all the part of it were filled. When I
 thought of a new aspect that should be covered I just opened a
 new frame on the corresponding outline entry. The spelling
 checker together with a computing dictionary were used to verify
 the spelling. The view page pagination always kept me informed of
 the amount I had written.
 All the frames were used with the word justify feature on
 and with a paragraph indent of 6 characters.

 17 Appendix C (Trademarks)

 MS DOS is a registered trademark of Microsoft Corp.
 IBM is a registered trademark of International Business Machines
 Corp.
 UNIX is a trademark of AT&T Bell Laboratories
 Apple and Apple II are registered trademarks of Apple Computer,
 Inc.
 VMS is a trademark of Digital Equipment Corp.
 Framework II and Fred are trademarks of Ashton-Tate
 UCSD, UCSD Pascal and UCSD p-System are all trademarks of the
 Regents of the University of California.
 Turbo Pascal and Sidekick are trademarks of Borland Inc.

 Other names of products which could be trademarks may have been
 used in the text. They have been used for reference purposes
 only.

 - 48 -

